Skip to main content
Log in

Electrochemical processing of porosity gradients for the production of functionally graded materials

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The present paper lays the theoretical foundations of a new production process for functionally graded materials (FGMs). The process is based on the evolution of porosity gradients in porous electrodes which undergo electrochemical dissolution or deposition. The electrodes with graded porosity serve as preforms for the production of graded composites by infiltration processing. A one-dimensional macroscopic model of the porous electrode has been used for the prediction of the porosity gradients. A numerical approach allows utilization of experimentally determined current–potential curves for nonporous electrodes, with the incorporation of changes of the pore structure during the course of the electrode reaction, to predict the porosity gradients. For porous copper cathodes and anodes the results of this model are compared with experimentally observed polarization behavior and porosity distributions for different current densities and electrolyte conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Marrocino, F. Coeuret and S. Langlois, Electrochim. Acta 32 (1987) 1303.

    Google Scholar 

  2. T. Doherty, J. G. Sunderland, E. P. L. Roberts and D. J. Pickett, ibid. 41 (1996) 519.

    Google Scholar 

  3. J. R. Backhurst, J. M. Coulson, F. Goodridge, R. E. Plimley and M. Fleischmann, J. Electrochem. Soc. 116 (1969) 1600.

    Google Scholar 

  4. C. J. Brown, D. Pletcher, F.C. Walsh, J. K. Hammond and D. Robinson, J. Appl. Electrochem. 24 (1994) 95.

    Google Scholar 

  5. A. Neubrand and J. Rödel, Z. Metallk. 88 (1997) 358.

    Google Scholar 

  6. R. Jedamzik, A. Neubrand and J. Rödel, submitted to J. Mater. Sci.

  7. A. Mortensen and S. Suresh, Internat. Mater. Rev. 40 (1995) 239.

    Google Scholar 

  8. V. S Daniel-Bekh, J. Phys. Chem. (Russian) 22 (1948) 697.

    Google Scholar 

  9. K. J. Euler, ETZ-A Germany 91 (1970) H11.

    Google Scholar 

  10. R. C. Alkire and B. Gracon, J. Electrochem. Soc. 122 (1975) 1594

    Google Scholar 

  11. J. Newman and C. W. Tobias, ibid. 109 (1962) 1183

    Google Scholar 

  12. A. Winsel, Z. Electrochem. 66 (1962) 287.

    Google Scholar 

  13. E. A. Greens II and C. W. Tobias, Ber. Bunsenges. Phys. Chem. 68 (1964) 236.

    Google Scholar 

  14. I. G. Gurevich and V. S. Bagotzky, Electrochim. Acta 9 (1964) 1151.

    Google Scholar 

  15. I. G. Gurevich and V. S. Bagotzky, ibid. 9 (1967) 593.

    Google Scholar 

  16. R. C. Alkire, E. A. Greens II and C. W. Tobias, J. Electrochem. Soc. 116 (1969) 1328.

    Google Scholar 

  17. R. E. Sioda, Electrochim. Acta 16 (1971) 1569.

    Google Scholar 

  18. S. Langlois and F. Coeuret, J. Appl. Electrochem. 20 (1990) 740.

    Google Scholar 

  19. A. Storck, M. A. Enriquez-Granados, M. Roger and F. Coeuret, Electrochim. Acta 27 (1982) 293.

    Google Scholar 

  20. I. Roušar, K. Micka and A. Kimla, ‘Electrochemical Engineering, Chemical Engineering Monographs’, Vol. 21B, Elsevier, Amsterdam (1986).

    Google Scholar 

  21. R. de Levie, in ‘Advances in Electrochemistry and Electrochemical Engineering’, Vol 6, (edited by P. Delahay), Interscience, New York (1967).

    Google Scholar 

  22. F. A. L. Dullien, ‘Porous Media; Fluid Transport and Pore Structure’, 2nd edn., Academic Press, CA. (1992)

    Google Scholar 

  23. A. R. Despic, in ‘Comprehensive Treatise of Electrochemistry’, Vol. 7 ‘Kinetics and Mechanisms of electrode processes’, B. E.Conway, J. O. M. (edited by Bockris, E. Yeager, S. U. M. Khan, R.E. White) Plenum, New York (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neubrand, A. Electrochemical processing of porosity gradients for the production of functionally graded materials. Journal of Applied Electrochemistry 28, 1179–1188 (1998). https://doi.org/10.1023/A:1003457008294

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003457008294

Navigation