Skip to main content
Log in

A study of current distribution in a DEM cell during bromate formation

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic oxidation of potassium bromide to potassium bromate is performed in an undivided cell with hydrogen evolution the major reaction at the counter electrode. The cell used is a dished electrode membrane (DEM) cell. Current density distribution, measured using a segmented electrode, shows a variation in the two principle dimensions; along the length of the electrode and over the width of the electrode. Current densities are highest at the electrolyte flow inlet and also exhibit a localized maximum along the electrode length. The variation in current density is due to the influence of electrolytic gas evolution on the effective electrolyte conductivity and mass transport and also due to the change in shape of the dished electrode, which influences mass transport, electrical potential field and flow at the cell inlet and exit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Vogt, ‘Gas Evolving Electrode’ in ‘Comprehensive Treatise of Electrochemistry’, Vol. 6 (edited by E. Yeager, J. O'M. Bockris, B. E. Conway and S. Sarangapani), Plenum Press, New York (1983).

    Google Scholar 

  2. W. S. Wu and G. P. Rangaiah, J App. Electrochem. 23 (1993) 1139.

    Google Scholar 

  3. G. H. Sedahmed, ibid. 10 (1980) 351.

    Google Scholar 

  4. A. M. Ahmed and G. H. Sedahmed, J. Electrochem. Soc. 135 (1988) 2766.

    Google Scholar 

  5. K. Scott and B. Hayati, Symposium On Electrochemical Cell Design and Optimisation Procedures, Dechema, 24–26 Sept. (1990).

  6. H. Vogt, Electrochim. Acta 23 (1978) 203.

    Google Scholar 

  7. C. I. Elsner and S. L. Maarchiano, J. App. Electrochem. 12 (1982) 735.

    Google Scholar 

  8. L. J. J. Janssen, ibid. 17 (1987) 1177.

    Google Scholar 

  9. H. Vogt, ibid. 19 (1989) 713.

    Google Scholar 

  10. M. G. Fouad and G. H. Sedahmed, Electrochim. Acta 18 (1973) 55.

    Google Scholar 

  11. L. J. J. Janssen and E. Barendrecht, ibid. 24 (1979) 693.

    Google Scholar 

  12. M. F. Sherbiny, A. A. Zatout, M. Hussien and G. H. Sedahmed, J. App. Electrochem. 21 (1991) 537.

    Google Scholar 

  13. O. N. Cavatorta, U. Böhm and A. M. Chiappori De Del Giorgio, J. App. Electrochem. 21 (1991) 40.

    Google Scholar 

  14. P. J. Sides, ‘Modern Aspects of Electrochemistry’, No. 18 (edited by R. E. White), Plenum Press, New York (1986), p. 303.

    Google Scholar 

  15. N. Ib1, Electrochim. Acta 24 (1979) 1105.

    Google Scholar 

  16. L. Sigrist, O. Dossenbach and N. Ib1, Int. J. Heat & Mass Transfer 22 (1979) 1393.

    Google Scholar 

  17. C. W. Tobias, J. Electrochem. Soc. 106 (1959) 833.

    Google Scholar 

  18. J. E. Funk and J. F. Thorpe, ibid. 116 (1969) 48.

    Google Scholar 

  19. Y. Nishiki, K. Aoki, K. Tokuda and H. Matsuda, J. App. Electrochem. 16 (1986) 615.

    Google Scholar 

  20. I. Roušar, V. Cezner and J. Hostomsky, Collect. Czech. Chem. Comm. 36 (1971) 1.

    Google Scholar 

  21. I. Roušar, V. Cezner, J. Nejepsova, M. M. Jackson, M. Spasojevie and B. Z. Nikolic, J. App. Electrochem. (1977) 427.

  22. I. Roušar, J. Electrochem. Soc. 116 (1969) 676.

    Google Scholar 

  23. J. M. Bisang, J. App. Electrochem. 21 (1991) 760.

    Google Scholar 

  24. L. J. J. Janssen and C. J. Visser, ibid. 21 (1991) 753.

    Google Scholar 

  25. L. R. Czarnetzki and L. J. J. Janssen, ibid. 19 (1989) 630.

    Google Scholar 

  26. J. M. Bisang, ibid. 23 (1993) 966.

    Google Scholar 

  27. P. Millington and D. Blum, ‘Electrosynthesis from Laboratory, to Pilot, to Production’, (edited by J. D. Genders and D. Pletcher), The Electrosynthesis Co., New York (1990), chapter 12.

    Google Scholar 

  28. K. Scott, ‘Electrochemical Processes for Clean Technology’, Royal Society of Chemistry, Cambridge, UK (1995).

    Google Scholar 

  29. K. Scott, ‘Electrochemical Engineering and Energy’, (edited by F. Lapicque, A. Storck and A. A. Wragg), Plenum Press, London (1994), p. 141.

    Google Scholar 

  30. P. Cettou, P. M. Robertson and N. Ibl, Electrochim. Acta 29 (1984) 875.

    Google Scholar 

  31. W. Taama, ‘Mass Transfer Studies in a DEM Electro-chemical Cell’ PhD thesis, University of Newcastle, UK (1991).

    Google Scholar 

  32. D. J. Economou, MS thesis, University of Illinois, IL (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, K., Taama, W. & Williams, B.R. A study of current distribution in a DEM cell during bromate formation. Journal of Applied Electrochemistry 28, 259–268 (1998). https://doi.org/10.1023/A:1003255430866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003255430866

Navigation