Skip to main content
Log in

Wet electrolytic oxidation of organic pollutants in wastewater treatment

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Wet electrolytic oxidation of organics in the presence of electrolytes and externally added oxygen gas was investigated for wastewater treatment. The experimental apparatus was a 300 ml electrolytic batch autoclave operated mainly at 250 C and 7 MPa. The results showed that the presence of halide ions such as chlorides and bromides strongly catalyses the conversion of pollutant organic compounds to innocuous compounds such as CO2 and water. The addition of external oxygen gas in wet electrolytic oxidation of acetic acid strongly suppressed the cathodic evolution of hydrogen gas and demonstrated a TOC removal profile with an apparent current efficiency higher than 100% for high concentration acetic acid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Li, P. Chen and F. Gloyna, AIChE J. 37 (1991) 1687.

    Google Scholar 

  2. S.H. Lin and T.S. Chuang, J. Environ. Sci. Health A29 (1994) 547.

    Google Scholar 

  3. J. Levec, M. Herskowits and J.M. Smith, AIChE J. 22 (1976) 919.

    Google Scholar 

  4. S. Imamura, A. Hirano and N. Kawabata, Ind. Eng. Chem. Prod. Res. Dev. 21 (1982) 570.

    Google Scholar 

  5. S. Imamura, I. Fukuda and S. Ishida, Ind. Eng. Chem. Res. 27 (1988) 718.

    Google Scholar 

  6. P.E. Savage and M.A. Smith, Environ. Sci. Technol. 29 (1995) 216.

    Google Scholar 

  7. C. Comninellis, I. Chem. E. Symposium Series 127 (1992) 189.

    Google Scholar 

  8. C. Comninellis and C. Pulgarin, J. Appl. Electrochem. 23 (1993) 108.

    Google Scholar 

  9. C. Comninellis, Electrochim. Acta 39 (1994) 1857.

    Google Scholar 

  10. M. Gattrell and D.W. Kirk, Can. J. Chem. Eng. 68 (1990) 997.

    Google Scholar 

  11. C. Commninellis and A. Nerini, J. Appl. Electrochem. 25 (1995) 23.

    Google Scholar 

  12. C. Comninellis and C. Pulgarin, J. Appl. Electrochem. 21 (1991) 703.

    Google Scholar 

  13. A. Savall, Chimia 49 (1995) 23.

    Google Scholar 

  14. S. Stucki, R. Kots, B. Carcer and W. Suter, J. Appl. Electrochem. 21 (1991) 99.

    Google Scholar 

  15. M. Sudo, H. Kitaguchi and K. Koide, J. Chem. Eng. Jpn 18 (1985) 409.

    Google Scholar 

  16. P.C. Foller and R.T. Bombard, J. Appl. Electrochem. 25 (1995) 613.

    Google Scholar 

  17. N. Yamada, T. Yaguchi, H. Otsuka and M. Sudoh, J. Electrochem. Soc. 146 (1999) 2587

    Google Scholar 

  18. T. Tzedakis, A. Savall and M.J. Crifton, J. Appl. Electrochem. 19 (1989) 911.

    Google Scholar 

  19. M. Sudoh, T. Kodera, K. Sakai, J.Q. Zhang and K. Koide, J. Chem. Eng. Jpn. 19 (1986) 513.

    Google Scholar 

  20. D.M. Himmelblau, J. Chem. Eng. Data 5 (1960) 393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serikawa, R., Isaka, M., Su, Q. et al. Wet electrolytic oxidation of organic pollutants in wastewater treatment. Journal of Applied Electrochemistry 30, 875–883 (2000). https://doi.org/10.1023/A:1004070303697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004070303697

Navigation