Skip to main content
Log in

Determination des efforts exerces par le vent sur un brise-vent

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Summary

When it is planned to erect artificial windbreaks, it is necessary to estimate the stress that will be exerted by the wind in order to calculate the mechanical characteristics of the supports. To that end, this paper proposes simple fomulas to calculate the drag coefficients of artificial windbreaks, based on their geometrical characteristics.

The drag force exerted by the wind on a windbreak having an height H can be written:

$$D = \tfrac{1}{2}C_{dh} \rho u^2 \left( H \right) \cdot H$$

for unit length and taking the reference wind speed u(H) at H level. The drag coefficient C dh is calculated by integrating elementary drag forces between ground level and H level, which can be written as:

$${\text{d}}D = \tfrac{1}{2}C_d \rho u^2 \left( z \right){\text{d}}z$$

C d being the drag coefficient of a grid element as determined in an uniform flow.

Considering the logarithmic wind profile u(z)= u */k ln z/z 0 and integrating between z 0 and H leads to the following relation between C dh and C d:

$$\frac{{C_{dh} }}{{C_d }} = 1 - \frac{2}{{\ln H/z_0 }} + \frac{2}{{\left( {\ln H/z_0 } \right)^2 }}$$

which is illustrated by Figure 2.

The drag coefficient C d may be determined as a function of windbreak porosity φ following the works of Valensi and Rebont (1959) and Castro (1971).

Valensi and Rebont propose:

$$C_d = 2.\frac{{1 - m^2 \phi ^2 }}{{1 + m^2 \phi ^2 }}$$

with m = 0.95 for a metal web and 0.9 < m < 0.95 for a perforated plate (Figure 1).

From Castro's work, lower C d values may be derived by adjusting his experimental values to a fourth-degree polynomial:

$$C_d = 1.85 - 1.74\phi - 0.85\phi ^2 + 1.73\phi ^3 - \phi ^4$$

.

Using these relationships, it is possible to calculate C dh knowing φ and H/z 0. The results of computations for H/z 0 = 200 are compared with the experimental results of Tani (1958), Hagen and Skidmore (1971), Seginer (1975) and de Bray (1971) in Figure 3.

While C dh estimations based on C d values derived from Valensi and Rebont (1969) are in good agreement with experimental values of Tani, Hagen and Skidmore and Seginer, calculations derived from Castro's data agree well with de Bray's results.

It is not possible at the present time to decide which is the more suitable relationship, but it seems preferable for structure computations to adopt C d values based on the work of Valensi and Rebont.

The determination of the application point of the drag force leads to the relation

$$\frac{{z_1 }}{H} = \frac{1}{2}\frac{{\left( {\ln H/z_0 } \right)^2 - \ln H/z_0 + \tfrac{1}{2}}}{{\left( {\ln H/z_0 } \right)^2 - 2\ln H/z_0 + 2}}$$

giving the z 1 level of this point. The variation of z 1/H as a function of H/z 0 is given in Figure 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  • De Bray, B. G.: 1971, ‘Protection by Fences’, Wind Effects an Buildings and Structures, Seminar 25–27 May, University of Auckland, N.Z.

    Google Scholar 

  • Castro, L. P.: 1971, ‘Wake Characteristics of Two-Dimensional Perforated Plates Normal to an Air-Stream’, J. Fluid. Mech. 46, 599–609.

    Google Scholar 

  • Guyot, G.: 1972, ‘Etude de l'écoulement de l'air au voisinage d'un obstacle poreux en couche limite turbulente (aérodynamique des brise vent)’, Thèse de Docteur Ingénieur Univ. Paris VI, 163 p. Texte - Figures.

  • Guyot, G.: 1977, ‘Les effets aérodynamiques des brise vent’, Promoclim E. Etudes Thermiques et Aérauliques, T. 8 E (3) 157–188.

  • Good, M. C. et Joubert, P. N.: 1968, ‘The Form Drag of Two-Dimensional Bluff-plates Immersed in Turbulent Boundary Layers’, J. Fluid. Mech. 31, 547–582.

    Google Scholar 

  • Hagen, L. J. et Skidmore, E. L.: 1971, ‘Windbreak Drag as Influenced by Porosity’, Trans. ASAE 14, 464–465.

    Google Scholar 

  • Hoerner, S. F.: 1965, Résistance à l'avancement dans les fluides, Gauthier-Villars, Paris, 472 pp.

    Google Scholar 

  • Plate, E. J.: 1964, ‘The Drag on a Smooth Flat Plate with a Fence Immersed in its Turbulent Boundary Layer’, ASME Paper No. 64-FE-17. 12 pp.

  • Plate, E. J.: 1971, ‘The Aerodynamic of Shelter Belts’, Agric. Meteorol. 8, 203–222.

    Google Scholar 

  • Seginer, I. et Sagi, R.: 1972, ‘Drag on a Windbreak in Two Dimensional Flow’, Agric. Meteorol. 9, 323–333.

    Google Scholar 

  • Seginer, I.: 1972, ‘Windbreak Drag Calculated from the Horizontal Velocity Field’, Boundary-Layer Meteorol. 8, 383–400.

    Google Scholar 

  • Seginer, I.: ‘Atmospheric Stability Effect on Windbreak Shelter and Drag’, Boundary-Layer Meteorol. 8, 383–400.

  • Tani, N.: 1958, ‘On the Wind Tunnel Test of Model Shelter Hedge’, Bull. Nat. Inst. Agric. Sci. Tokyo A (6), 1–81.

    Google Scholar 

  • Valensi, J. et Possel, R.: 1954, ‘Trainée et porosité aérodynamique d'une bande perméable; cas des Tôles perforées’, C. R. Acad. Sci. 239, 579–580.

    Google Scholar 

  • Valensi, J.: 1955, Etablissement d'un mur pare-vent perforé pour les navires à quai—lère partie Association Technique Maritime et Aéronautique Session, 1955, 17 pp.

  • Valensi, J. et Rebont, J.: 1969, ‘Aerodynamique des parois perforées: application au projet d'écrans de protection contre le vent; étude du fonctionnement de ces écrans AGARD, CP. No 48.

  • Woodruff, N. P., Fryrear, D. W., et Lyles, L.: 1963, ‘Engineering Similitude and Momentum Transfer Principles Applied to Shelterbelt Studies’, Trans. ASAE 6, 41–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guyot, G. Determination des efforts exerces par le vent sur un brise-vent. Boundary-Layer Meteorol 15, 57–67 (1978). https://doi.org/10.1007/BF00165505

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00165505

Navigation