Skip to main content
Log in

Chondrocyte transplantation for osteochondral defects with the use of suspension culture

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Archer CW, McDowell J, Bayliss MT, Stephens MD and Bentley G (1990) Phenotypic modulation in sub-populations of human articular chondrocytes in vitro. J Cell Sci 97: 361-371

    Google Scholar 

  • Benya PD and Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215-224

    Google Scholar 

  • Brittberg M, Nilsson A, Lindahl A, Ohlsson C and Peterson L (1996) Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop 326: 270-283

    Google Scholar 

  • Chomczynski P and Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156-159

    Google Scholar 

  • Elima K and Vuorio E (1989) Expression of mRNAs for collagens and other matrix components in dedifferentiating and redifferentiating human chondrocytes in culture. FEBS Letters 258: 195-198

    Google Scholar 

  • Frondoza C, Sohrabi A and Hungerford D (1996) Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 17: 879-888

    Google Scholar 

  • Grundmann K, Zimmermann B, Barrach H-J and Merker H-J (1980) Behavior of epiphyseal mouse chondrocyte populations in monolayer culture. Virchows Archiv A Path Anat Histol 389: 167-187

    Google Scholar 

  • Grande DA, Pitman MI, Peterson L, Menche D and Klein M (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7: 208-218

    Google Scholar 

  • Itay S, Abramovici A and Nevo Z (1987) Use of cultured embryonal chick epiphyseal chondrocytes as grafts for defects in chick articular cartilage. Clin Orthop 220: 284-303

    Google Scholar 

  • Kawasaki K, Ochi M, Uchio Y, Adachi N and Matsusaki M (1999) Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels. J Cell Physiol 179: 142-148

    Google Scholar 

  • Kolettas E, Buluwela L, Bayliss MT and Muir HI (1995) Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes. J Cell Sci 108: 1991-1999

    Google Scholar 

  • Liu H, Lee Y-W and Dean MF (1998) Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim Biophys Acta 1425: 505-515

    Google Scholar 

  • Loty C, Forest N, Boulekbache H, Kokubo T and Sautier JM (1997) Behavior of fetal rat chondrocytes cultured on a bioactive glassceramic. J Biomed Mater Res 37: 137-149

    Google Scholar 

  • Maleski MP and Knudson CB (1996) Matrix accumulation and retention in embryonic cartilage and in vitro chondrogenesis. Connective Tissue Res 34: 75-86

    Google Scholar 

  • Nakano T, Imai S, Koga T and Sim JS (1997) Light microscopic histochemical and immunohistochemical localisation of sulphated glycosaminoglycans in the rooster comb andwattle tissues. J Anat 189: 643-650

    Google Scholar 

  • O'Driscoll SW (1998) The healing and regeneration of articular cartilage. J Bone Joint Surg 80A: 1795-1812

    Google Scholar 

  • Reginato AM, Iozzo RV and Jimenez SA (1994) Formation of nodular structures resembling mature articular cartilage in long-term primary cultures of human fetal epiphyseal chondrocytes on a hydrogel substrate. Arthritis & Rheumatism 37: 1338-1349

    Google Scholar 

  • Robinson D, Halperin N and Nevo Z (1990) Regenerating hyaline cartilage in articular defects of old chickens using implants of embryonal chick chondrocytes embedded in a new natural delivery substance. Calcif Tissue Int 46: 246-253

    Google Scholar 

  • Shakibaei M, De Souza P and Merker HJ (1997) Integrin expression and collagen II implicated in maintenance of chondrocyte shape in monolayer culture: An immunomorphological study. Cell Biol Int 21: 115-125

    Google Scholar 

  • Shimizu C, Coutts RD, Healey RM, Kubo T, Hirasawa Y and Amiel D (1997) Method of histomorphometric assessment of glycosaminoglycans in articular cartilage. J Orthop Res 15: 670-674

    Google Scholar 

  • Stephens M, Kwan APL, Bayliss MT and Archer CW (1992) Human articular surface chondrocytes initiate alkaline phosphatase and type X collagen synthesis in suspension culture. J Cell Sci 103: 1111-1116

    Google Scholar 

  • Svoboda KK (1998) Chondrocyte-matrix attachment complexes mediate survival and differentiation. Microscopy Res Tech 43: 111-122

    Google Scholar 

  • van Susante JLC, Buma P, van Osch GJVM, Versleyen D, van der Kraan PM, van der Berg WB and Homminga GN (1995) Culture of chondrocytes in alginate and collagen carrier gels. Acta Orthop Scand 66: 549-556

    Google Scholar 

  • Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, Owaki H and Ono K (1989) Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg 71B: 74-80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izumi, T., Tominaga, T., Shida, J. et al. Chondrocyte transplantation for osteochondral defects with the use of suspension culture. Cell Tissue Banking 1, 207–212 (2000). https://doi.org/10.1023/A:1026594718938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026594718938

Keywords

Navigation