Skip to main content
Log in

Stability of a Functional Murine Satellite DNA-based Artificial Chromosome Across Mammalian Species

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

A 60-Mb murine chromosome consisting of murine pericentric satellite DNA and two bands of integrated marker and reporter genes has been generated de novo in a rodent/human hybrid cell line (mM2C1). This prototype mammalian artificial chromosome platform carries a normal centromere, and the expression of its β-galactosidase reporter gene has remained stable under selection for over 25 months. The novel chromosome was transferred by a modified microcell fusion method to mouse [L-M(TK−)], bovine (P46) and human (EJ30) cell lines. In all cases, the chromosome remained structurally and functionally intact under selection for periods exceeding 3 months from the time of transfer into the new host. In addition, the chromosome was retained in three first- generation tumours when L-M(TK−) cells containing the chromosome were xenografted in severe combined immunodeficiency mice. These data support that a murine satellite DNA-based artificial chromosome can be used as a functional mammalian artificial chromosome and can be maintained in vivo and in cells of heterologous species in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown WR (1992) Mammalian artificial chromosomes. Curr Opin Genet Dev 2: 479-486.

    Article  PubMed  CAS  Google Scholar 

  • Brown W, Heller R, Loupart ML, Shen MH, Chand A (1996) Mammalian artificial chromosomes. Curr Opin Genet Dev 6: 281-288.

    Article  CAS  Google Scholar 

  • Calos MP (1996) The potential of extrachromosomeal replicating vectors for gene therapy. Trends Genet 12: 463-466.

    Article  PubMed  CAS  Google Scholar 

  • Carine K, Solus J, Waltzer E, Manch-Citron J, Hamkalo BA, Scheffler IE (1986) Chinese hamster cells with a minichromosome containing the centromere region of human chromosome 1. Somat Cell Mol Genet 12: 479-491.

    Article  PubMed  CAS  Google Scholar 

  • Carine (1989)

  • de Jong G, Telenius AH, Telenius H, Perez CP, Drayer JI, Handlaczky G (1998) Mammalian artificial chromosome pilot production facility: large-scale isolation of functional satellite DNA-based artificial chromosomes. Cytometry (in press).

  • Dieken ES, Epner EM, Fiering S, Fournier RE, Groudine M (1996) Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids. Nature Genet 12: 174-182.

    Article  PubMed  CAS  Google Scholar 

  • Fabb SA, Davies AF, Correa I et al. (1997) Generation of novel human MHC class II mutant a-cell lines by integrating YAC DNA into a cell line homozygously deleted for the MHC class II region. Hum Mol Genet 6: 1295-1304.

    Article  PubMed  CAS  Google Scholar 

  • Farr CJ, Bayne RA, Kipling D, Mills W, Critcher R, Cooke HJ (1995) Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J 14: 5444-5454.

    PubMed  CAS  Google Scholar 

  • Harnden DG, Klinger HP (1985) ISCN 1985: An International System for Human Cytogenetic Nomenclature. Basle: S Karger AG.

    Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nature Genet 15: 345-355.

    Article  PubMed  CAS  Google Scholar 

  • Hay R, Caputo J, Chen TR, Macy M, McClintock P, Reid Y (eds) (1994) ATCC Cell lines and Hybridomas, 8th edn. Rockville, MD: American Type Culture Collection, p 3.

    Google Scholar 

  • Heller R, Brown KE, Burgtorf C, Brown WR (1996) Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci USA 93: 7125-7130.

    Article  PubMed  CAS  Google Scholar 

  • Hollo G, Kereso J, Praznovszky T et al. (1996) Evidence for a megareplicon covering megabases of centromeric chromosome segments. Chrom Res 4: 240-247.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, C (1997) Mammalian artificial chromosomes and chromosome transgenics. Trends Genet 13: 345-347.

    Article  PubMed  CAS  Google Scholar 

  • Ikeno M, Grimes B, Okazaki T et al. (1998) Construction of YAC-based mammalian artificial chromosomes. Nature Biotechnol 16: 431-439.

    Article  CAS  Google Scholar 

  • Keresö J, Praznovszky T, Cserpan I et al. (1996) De novo chromosome formations by large-scale amplification of the centromeric region of mouse chromosomes. Chrom Res 4: 226-239.

    Article  PubMed  Google Scholar 

  • Mendez MJ, Green LL, Corvalan JR et al. (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nature Genet 15: 146-156.

    Article  PubMed  CAS  Google Scholar 

  • Orkin S, Motulsky A. (1995) Report and recommendations of the panel to assess the NIH investment in research on gene therapy. National Institutes of Health. Bethesda, MD, pp 1-28.

    Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83: 2934-2938.

    Article  PubMed  CAS  Google Scholar 

  • Simpson K, McGuigan A, Huxley C (1996) Stable episomal maintenance of yeast artificial chromosomes in human cells. Mol Cell Biol 16: 5117-5126.

    PubMed  CAS  Google Scholar 

  • Smith DJ, Rubin EM (1997) Functional screening and complex traits: human 21q22.2 sequences affecting learning in mice. Hum Mol Genet 6: 1729-1733.

    Article  PubMed  CAS  Google Scholar 

  • Stubblefield E, Pershouse M (1992) Direct formation of microcells from mitotic cells for use in chromosome transfer. Somat Cell Mol Genet 18: 485-491.

    Article  PubMed  CAS  Google Scholar 

  • Sun T-Q, Fenstermacher D, Vos J-M (1994) Human artificial episomal chromosomes for cloning large DNA in human cells. Nature Genet 8: 33-41.

    Article  PubMed  CAS  Google Scholar 

  • Tomizuka K, Yoshida H, Uejima H et al. (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nature Genet 16: 133-143.

    Article  PubMed  CAS  Google Scholar 

  • Vos J-M (1997) The simplicity of complex MACs. Nature Biotech 15: 1257-1259.

    Article  CAS  Google Scholar 

  • Vos J-M (1998) Mammalian artificial chromosomes as tools for gene therapy. Curr Opin Genet Dev 8: 351-359.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF (1996) Chromosome manipulation: a systematic approach toward understanding human chromosome structure and function. Proc Natl Acad Sci USA 93: 6847-6850.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telenius, H., Szeles, A., Keresö, J. et al. Stability of a Functional Murine Satellite DNA-based Artificial Chromosome Across Mammalian Species. Chromosome Res 7, 3–7 (1999). https://doi.org/10.1023/A:1009215026001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009215026001

Navigation