Skip to main content
Log in

Chaperone and foldase coexpression in the baculovirus-insect cell expression system

  • Published:
Cytotechnology Aims and scope Submit manuscript

Conclusions

The BEVS has become widely utilized for production of recombinant proteins. However, protein aggregation and inefficient processing often limit yields, especially for secreted and membrane proteins. Since many proteins of pharmaceutical interest require similar posttranslational processing steps, engineering the folding, assembly, and secretion pathway may enhance the production of a wide variety of valuable complex proteins. Efforts should be undertaken to coexpress the relevant chaperones or foldases at low levels in concert with the final product to ensure the ideal folding and assembly environment. In the future, expression of oligosaccharide modifying enzymes and secretion factors may further improve secretion rates of assembled proteins and provide heterologous proteins with altered glycoforms. Also significant is the use of BEVS as an in vivo eucaryotic laboratory to study the fundamental roles of differnt chaperones, foldases, and secretion factors. The coexpression of chaperones and foldases will complement other approaches such as the development of alternative insect cell lines, promoters, and signal peptides to optimize the baculovirus-insect cell expression system for generating high yields of valuable proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BEVS:

Baculovirus expression vector system

BiP:

immunoglobulin heavy chain binding protein

ELISA:

Enzyme-linked immunosorbent assay

ER:

Endoplasmic reticulum

GRP:

Glucose regulated protein

Hsp:

Heat shock protein

IgG:

Immunoglobulin G

PDI:

Protein Disulfide Isomerase

PPI:

Peptidyl-prolyl cis-trans isomerase

Sf-9:

Spodoptera frugeperda

References

  • AlnemriES & LitwackG (1993) The steroid binding domain influences intracellular solubility of the baculovirus overexpressed glucocorticoid and mineralocorticoid receptors. Biochemistry 32: 5387–5393.

    Google Scholar 

  • AndersonKS & CresswellP (1994) A role for calnexin (IP90) in the assembly of class II MHC molecules. EMBO J. 13: 675–682.

    Google Scholar 

  • AnfinsenCB (1973) Principles that govern the folding of protein chains. Science 181: 223–230.

    Google Scholar 

  • BachingerHP (1987) The influence of peptidyl-prolyl cis-trans isomerase on the in vitro folding of type III collagen. J. Biol. Chem. 262: 17144–17148.

    Google Scholar 

  • Blond-ElguindiS, FourieAM, SambrookJF & GethingMJ (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75: 717–728.

    Google Scholar 

  • BoleDG, HendershotLM & KearneyJF (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J. Cell Biol. 102: 1558–1556.

    Google Scholar 

  • BrandtsJF, HalvorsonH & BrennanM (1975) Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline. Biochemistry 14: 4953–4963.

    Google Scholar 

  • BulleidNJ & FreedmanRB (1988) Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 335: 649–651.

    Google Scholar 

  • CaroniP, RothenfluhA, McGlynnE & SchneiderC (1991) S-cyclophilin: new member of the cyclophilin family associated with the secretory pathway. J. Biol. Chem. 266: 10739–10742.

    Google Scholar 

  • ChengHN & BoveyFA (1977) Cis-trans equilibrium and kinetic studies of acetyl-L-proline and glycyl-L-proline. Biopolymers 16: 1465–1472.

    Google Scholar 

  • ColleyNJ, BakerEK, StamnesMA & ZukerCS (1991) The cyclophilin homolog ninaA is required in the secretory pathway. Cell 67: 255–263.

    Google Scholar 

  • CraigEA, GambilBG & NelsonJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 57: 402–414.

    Google Scholar 

  • DavisJM, BoswellBA & BachingerHP (1989) Thermal stability and folding of type IV procollagen and effect of peptidyl-prolyl cis-trans-isomerase on the folding of the triple helix. J. Biol. Chem. 264: 8956–8962.

    Google Scholar 

  • DavisTR, ShulerML, GranadosRR & WoodHA (1993) Comparison of oligosaccharide processing among various insect cell lines expressing a secreted glycoprotein. In Vitro Cell. Dev. Biol. 29A: 842–846.

    Google Scholar 

  • deSilvaAM, BalchWE & HeleniusA (1990) Quality control in the endoplasmic reticulum: folding and misfolding of vesicular stomatitis virus G protein in cells and in vitro. J. Cell Biol. 111: 857–866.

    Google Scholar 

  • EarlPL, MossB & DomsRW (1991) Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J. Virology 65: 2047–2055.

    Google Scholar 

  • FischerG, BangH & MechC (1984) Determination of enzymatic catalysis for the cis-trans- isomerization of peptide binding in proline-containing peptides. Biomed. Biochim. Acta 43: 1101–1111.

    Google Scholar 

  • FischerG, Wittmann-LieboldB, LangK, KiefhaberT & SchmidFX (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337: 476–478.

    Google Scholar 

  • FischerG (1994) Peptidyl-prolyl cis/trans isomerases and their effectors. Angew. Chem. Int. Ed. Engl. 33: 1415–1436.

    Google Scholar 

  • FlynnGC, PohlJ, FloccoMT & RothmanJE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353: 726–730.

    Google Scholar 

  • FranssonC, FreskgardPO, HerbertssonH & JohanssonA (1992) Cis-trans isomerization is rate-determining in the reactivation of denatured human carbonic anhydrase II as evidenced by proline isomerase. FEBS Lett. 296: 90–94.

    Google Scholar 

  • FreedmanRB, BulleidNJ, HawkinsHC & PaverJL (1989) Role of protein disulphide-isomerase in the expression of native proteins. Biochem. Soc. Symp. 55: 167–192.

    Google Scholar 

  • FreedmanRB, HirstTR & TuiteMF (1994) Protein disulphide isomerase: building bridges in protein folding. Trends Biochem. Sci. 19: 331–336.

    Google Scholar 

  • FresgardPO, BergenhemN, JonssonBH, SvenssonM & CarlssonU (1992) Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anhydrase. Science 258: 466–468.

    Google Scholar 

  • GeorgiouG & BowdenGA (1990) Inclusion body formation and the recovery of aggregated recombinant proteins. In: HoC, ProkopA & BajpaiR (eds) Recombinant DNA Technology and Applications. (pp. 333–356) McGraw-Hill, New York.

    Google Scholar 

  • GeorgopoulosC (1992) The emergence of the chaperone machines. Trends Biochem Sci. 17: 295–299.

    Google Scholar 

  • GethingMJ & SambrookJ (1989) Protein folding and intracellular transport: studies on influenza virus haemagglutinin. Biochem. Soc. Symp. 55: 155–166.

    Google Scholar 

  • GethingMJ & SambrookJ (1992) Protein folding in the cell. Nature 355: 33–45.

    Google Scholar 

  • GrathwohlC & WuthrichK (1976a) The X-Pro peptide bond as an NMR probe for conformational studies of flexible linear peptides. Biopolymers 15: 2025–2041.

    Google Scholar 

  • GrathwohlC & WuthrichK (1976b) NMR studies of the molecular conformations in the linear oligopeptides H-(L-Ala)n-L-Pro-OH. Biopolymers 15: 2043–2057.

    Google Scholar 

  • GrathwohlC & WuthrichK (1981) NMR studies of the rates of proline cis-trans isomerization in oligopeptides. Biopolymers 20: 2623–2633.

    Google Scholar 

  • GunneH, HellersM & SteinerH (1990) Structure of preproattacin and its processing in insect cells infected with a recombinant baculovirus. Eur. J. Biochem. 187: 699–703.

    Google Scholar 

  • HaasIG & WablM (1983) Immunoglobulin heavy chain binding protein. Nature 306: 387–389.

    Google Scholar 

  • HaasIG & MeoT (1988) cDNA cloning of the immunoglobulin heavy chain binding protein. Proc. Nat. Acad. Sci. USA 85: 2250–2254.

    Google Scholar 

  • HammondC & HeleniusA (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266: 456–458.

    Google Scholar 

  • HandschumacherRE, HardingMW, RiceJ, DruggeR & SpeicherDW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226: 544–547.

    Google Scholar 

  • HasemanCA & CapraJD (1990) High-level production of a functional immunoglobulin heterodimer in a baculovirus expression system. Proc. Nat. Acad. Sci. USA 87: 3942–3946.

    Google Scholar 

  • HeleniusA, MarquardtT & BraakmanI (1992) The endoplasmic reticulum as a protein-folding compartment. Trends in Cell Biology 2: 227–231.

    Google Scholar 

  • HeleniusA (1994) How N-linked oligosacharides affect glycoprotein folding in the endoplasmic reticulum. Molecular Biology of the Cell 5: 253–265.

    Google Scholar 

  • HochstenbachF, DavidV, WatkinsS & BrennerM (1992) Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-Cell antigen receptors and major histocompatibility complex during their assembly. Proc. Nat. Acad. Sci. USA 89: 4734–4738.

    Google Scholar 

  • HsuTA, EidenJJ & BetenbaughMJ (1994a) Engineering the assembly pathway of the baculovirus-insect cell expression system. Annals of the New York Academy of Sciences 721: 208–217.

    Google Scholar 

  • HsuTA, EidenJJ, BourgarelP, MeoT & BetenbaughMJ (1994b) Effects of co-expressing chaperone BiP on functional antibody production in the baculovirus system. Protein Expression and Purification 5: 595–603.

    Google Scholar 

  • HsuTA, WatsonS, EidenJJ & BetenbaughMJ (1996) Rescue of immunoglobulins from insolubility is facilitated by PDI in the baculovirus expression system. Protein Expression and Purification 7: 281–288.

    Google Scholar 

  • HuthJR, PeriniF, LockridgeO, BedowsE & RuddonRW (1993) Protein folding and assembly in vitro parallel intracellular folding and assembly. Catalysis of folding and assembly of the human chorionic gonadotropin alpha beta dimer by protein disulfide isomerase. J. Biol. Chem. 268: 16472–16482.

    Google Scholar 

  • JakobU & BuchnerJ (1994) Assisting spontaneity: the role of hsp90 and small hsps as molecular chaperones. Trends Biochem. Sci. 19: 205–211.

    Google Scholar 

  • JarvisDL & SummersMD (1989) Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells. Mol. Cell Biochem. 9: 214–223.

    Google Scholar 

  • JarvisDL, SummersMD, GarciaA & BohlmeyerDA (1993) Influence of different signal peptides and prosequences on expression and secretion of human tissue plasminogen activator in the baculovirus system. J. Biol. Chem. 268: 16754–16762.

    Google Scholar 

  • JeangKT, GiamCZ, NierenbergM & KhouryG (1987) Abundant synthesis of functional HTLV-1 p40X protein in eucaryotic cells by using baculovirus expression vectors. J. Virology 61: 708–713.

    Google Scholar 

  • JenkinsN & CurlingEMA (1994) Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb. Technol. 16: 354–364.

    Google Scholar 

  • KiefhaberT, QuaasR, HahnU & SchmidFX (1990) Folding of ribonuclease T1. 1. existence of multiple unfolded states created by proline isomerization. Biochemistry 29: 3053–3060.

    Google Scholar 

  • KimPS, BoleD & ArvanP (1992) Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: relationship to the molecular chaperone, BiP. J. Cell Biol. 118: 541–549.

    Google Scholar 

  • KimPS & ArvanP (1995) Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum. J. Cell Biol. 128: 29–38.

    Google Scholar 

  • KnappikA, KrebberC & PluckthunA (1993) The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Bio/Technology 11: 77–83.

    Google Scholar 

  • KnittlerMR & HaasIG (1992) Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release. EMBO J. 11: 1573–1581.

    Google Scholar 

  • KozutsumiY, SegalM, NormingtonK, GethingMJ & SambrookJ (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332: 462–464.

    Google Scholar 

  • LamantiaML & LennarzWJ (1993) The essential function of yeast protein disulfide isomerase does not reside in its isomerase activity. Cell 74: 899–908.

    Google Scholar 

  • LangK, SchmidF & FischerG (1987) Catalysis of protein folding by prolyl isomerase. Nature 329: 268–270.

    Google Scholar 

  • LeeAS (1987) Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends in Biochem. Sci. 12: 20–23.

    Google Scholar 

  • LiZ & SrivastavaPK (1993) Tumor rejection antigen gp96/grp96 is an ATPase: implications for protein folding and antigen presentation. EMBO J. 12: 3143–3151.

    Google Scholar 

  • LilieH, LangK, RudolphR & BuchnerJ (1993) Prolyl isomerases catalyze antibody folding in vitro. Protein Science 2: 1490–1496.

    Google Scholar 

  • LilieH, McLaughlinS, FreedmanR & BuchnerJ (1994) Influence of protein disulfide isomerase (PDI) on antibody folding in vitro. J. Biol. Chem. 269: 14290–14296.

    Google Scholar 

  • LodishHF & KongN (1991) Cyclosporin A inhibits an initial step in folding of transferrin within the endoplasmic reticulum. J. Biol. Chem. 266: 14835–14838.

    Google Scholar 

  • LuckowVA (1990) Cloning and expression of heterologous genes in insect cells with baculovirus vectors. In: HoC, ProkopA & BajpaiR (eds) Recombinant DNA Technology and Applications. (pp. 97–149) McGraw-Hill, New York.

    Google Scholar 

  • LuckowVA (1993) Baculovirus systems for the expression of human gene products. Current Opinion in Biotechnology 4: 564–572.

    Google Scholar 

  • LylesMM & GilberHF (1991) Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: pre-steady-state kinetics and the utilization of the oxidizing equivalents of the isomerase. Biochemistry 30: 619–625.

    Google Scholar 

  • MarquardtT & HeleniusA (1992) Misfolding and aggregation of newly synthesized proteins in the endoplasmic reticulum. J. Cell Biol. 117: 505–513.

    Google Scholar 

  • MazzarellaRA, SrinivasanM, HaugejordenSM & GreenM (1990) Erp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site seqences of protein disulfide isomerase. J. Biol. Chem. 265: 1094–1101.

    Google Scholar 

  • MelnickJ, AvielS & ArgonY (1992) The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J. Biol. Chem. 267: 21303–21306.

    Google Scholar 

  • MelnickJ, DulJL & ArgonY (1994) Sequential interaction of the chaperone BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370: 373–375.

    Google Scholar 

  • Mitchell-Logean & Murhammer (1995) Baculovirus and Gene Expression Conference.

  • MitrakiA, Haase-PettingellC & KingJ (1991) Mechanisms of inclusion body formation. In: Debernardez-ClarkE & GeorgiouG (eds) Protein Refolding. Vol. 470 (pp. 35–49) American Chemical Society, Washington DC.

    Google Scholar 

  • MurphyCI, LennickM, LeharS, BeltzGA & YoungE (1990) Temporal expression of HIV-1 envelope proteins in baculovirus-infected insect cells: implications for glycosylation and CD4 binding. Genetic Analysis, Techniques and Applications 7: 160–171.

    Google Scholar 

  • MurphyCI, McIntireJR, DavisDR, HodgdonH, SealsJR & YoungE (1993) Enhanced expression, secretion, and large-scale purification of recombinant HIV-1 gp120 in insect cells using the baculovirus egt and p67 signal peptides. Protein Expression and Purification 4: 349–357.

    Google Scholar 

  • NavarroD, QadriI & PereiraL (1991) A mutation in the ectodomain of herpes simplex virus 1 glycoprotein B causes defective processing and retention in the endoplasmic reticulum. Virology 184: 253–264.

    Google Scholar 

  • NakhaiB, PalR, SridharP, TalwarGP & HasnainSE (1991) The α subunit of human gonadotropin hormone synthesized in insect cells using a baculovirus vector is biologically active. FEBS J. 283: 104–108.

    Google Scholar 

  • NoivaR, & LennarzWJ (1992) Protein disulfide isomerase: A multifunctional protein resident in the lumen of the endoplasmic reticulum. J. Biol. Chem. 267: 3553–3556.

    Google Scholar 

  • O'ReillyDR, MillerLK & LuckowVA (1992) Baculovirus Expression Vectors. W. H. Freeman and Company, New York.

    Google Scholar 

  • OuW, CameronPH, ThomasDY & BergeronJJM (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364: 771–776.

    Google Scholar 

  • PasumarthyMK & MurhammerDW (1994) Clonal variation in the Spodoptera frugiperda IPLB-SF21- AE insect cell population. Biotech. Progress 10: 314.

    Google Scholar 

  • PaulJI, TavareJ, DentonRM & SteinerDF (1990) Baculovirus-directed expression of the human insulin receptor and an insulin-binding ectodomain. J. Biol. Chem. 265: 13074–13083.

    Google Scholar 

  • PelhamHRB (1989) Control of protein exit from the endoplasmic reticulum. Ann. Rev. Cell Biol. 5: 1–23.

    Google Scholar 

  • PigietVP & SchusterBJ (1986) Thioredoxin-catalyzed refolding of disulfide-containing proteins. Proc. Nat. Acad. Sci. USA 83: 7643–7647.

    Google Scholar 

  • PindS, RiordanJR & WilliamsDB (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269: 12784–12788.

    Google Scholar 

  • PotvinB, KumarR, HowardDR & StanleyP (1990) Transfection of a human α-(1,3)fucosyltransferase gene ïnto chinese hamster ovary cells. complications arise from activation of endogenous α-(1,3)fucosyltransferases. J. Biol. Chem. 265: 1615–1622.

    Google Scholar 

  • PuigA & GilbertHF (1994) Protein disufide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J. Biol. Chem. 269: 7764–7771.

    Google Scholar 

  • RanklNB, RiceJW, GurganusTM, BarbeeJL & BurnsDJ (1994) The production of an active protein kinase C-δ in insect cells is greatly enhanced by the use of the basic protein promoter. Protein Expression and Purification 5: 346–356.

    Google Scholar 

  • RothRA & KoshlandME (1981) Role of disulfide interchange enzyme in immunoglobulin synthesis. Biochemistry 20: 6594–6599.

    Google Scholar 

  • RothRA & PierceSB (1987) In vivo cross-linking of protein disulfide isomerase to immunoglobulins. Biochemistry 26: 4179–4182.

    Google Scholar 

  • RothblattJ, NovickP, StevensT (1994) Guidebook to the Secretory Pathway. Oxford University Press, Oxford.

    Google Scholar 

  • RothmanJE (1989) Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59: 591–601.

    Google Scholar 

  • RothmanJE (1994) Mechanisms of intracellular protein transport. Nature 372: 55–63.

    Google Scholar 

  • SchaiffWT, HruskaKAJr., McCourtDW, GreenM & SchwartzBD (1992) HLA-DR associates with specific stress proteins and is retained in the endoplasmic reticulum in invariant chain negative cells. J. Exp. Med. 176: 657–666.

    Google Scholar 

  • SchmidF (1993) Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu. Rev. Biophys. Biomol. Struct. 22: 123–143.

    Google Scholar 

  • ShulerML, WoodHA, GranadosRR & HammerDA (1995) Baculovirus Expression Systems and Biopesticides. Wiley-Liss Inc., New York.

    Google Scholar 

  • SiekierkaJ, HungSHY, PoeM, LinCS & SigalNH (1989) A cytosolic binding protein for the immunosuppresent FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341: 755–757.

    Google Scholar 

  • SissomJF & EllisL (1991) Biosynthesis of the precursor of a soluble human insulin receptor ectodomain in insect sf9 cells infectd with a recombinant baculovirus. Biochem. Biophys. Res. Comm. 177: 764–770.

    Google Scholar 

  • SmithDF, LarsenRD, MattoxS, LoweJB & CummingsRD (1990) Transfer and expression of a murine UDP-Gal:β-D-Gal α1,3-galactosyltransferase gene in transfected chinese hamster overy cells. competition reactions between the α1,3-galactosyltransferase and the endogenous α2,3-sialyltransferase. J. Biol. Chem. 265: 6225–6234.

    Google Scholar 

  • SridarP & HasnainSE (1993) Differential secretion and glycosylation of recombinant human chorionic gonadotropin (bhCG) synthesized using different promoters in the baculovirus expression vector system. Gene 131: 261–264.

    Google Scholar 

  • StamnesMA, ShiehBH, ChumanL & ZukerCS (1991) The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of drosophila rhodopsins. Cell 65: 219–227.

    Google Scholar 

  • SteinmannB, BrucknerP & Superti-furgaA (1991) Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans isomerase. J. Biol. Chem. 266: 1299–1303.

    Google Scholar 

  • SternLJ & WileyDC (1992) The human class II MHC HLA-DR1 assembles as empty αβ heterodimers in the absence of antigenic peptide. Cell 68: 465–477.

    Google Scholar 

  • Summers MD & Smith GE (1987) Bulletin No. 1555. Texas Agricultural Experiment Station and Texas A&M University.

  • TessierDC, ThomasDY, KhouriHE, LaliberteF & VernetT (1991) Enhanced secretion from insect cells for a foreign protein fused to the honeybee melittin signal peptide. Gene 98: 177–183.

    Google Scholar 

  • VogelJP, MisraLM & RoseMD (1990) Loss of BiP/GRP78 functions blocks translocation of secretory proteins in yeast. J. Cell. Biol. 110: 1885–1895.

    Google Scholar 

  • VuoriK, PihlajaniemiT, MartillaM & KivirikkoKI (1992a) Characterization of the human prolyl 4-hydroxylase tetramer and its multifunctional protein disulfide-isomerase subunit synthesized in a baculovirus expression system. Proc. Nat. Acad. Sci. USA 89: 7467–7470.

    Google Scholar 

  • VuoriK, PihlajaniemiT, MyllylaR & KivirikkoKI (1992b) Sitedirected mutagenesis of human protein disulphide isomerase: effect on the assembly, activity, and endoplasmic reticulum retention of human prolyl 4-hydroxlase in Spodoptera frugiperda insect cells. EMBO J. 11: 4213–4217.

    Google Scholar 

  • WadaI, OuW, LiuM & ScheeleG (1994) Chaperone function of calnexin for the folding intermediate of gp80, the major secretory protein in MDCK cells. J. Biol. Chem. 269: 7464–7472.

    Google Scholar 

  • WeichH, BuchnerJ, ZimmermannR & JakobU (1992) Hsp90 chaperones protein folding in vitro. Nature 358: 169–170.

    Google Scholar 

  • WeissmanJS, & KimPS (1993) Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature 365: 185–188.

    Google Scholar 

  • WittrupKD (1995) Disulfide bond formation and eucaryotic secretory productivity. Current Opinion in Biotechnology 6: 203–208.

    Google Scholar 

  • zu-PutlitzJ, KubasekWL, DucheneM, MargetM, vonSpechtBU & DomdeyH (1990) Antibody production in baculovirus-infected insect cells. Bio/Technology 8: 651–654.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betenbaugh, M.J., Ailor, E., Whiteley, E. et al. Chaperone and foldase coexpression in the baculovirus-insect cell expression system. Cytotechnology 20, 149–159 (1996). https://doi.org/10.1007/BF00350396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350396

Key words

Navigation