Skip to main content
Log in

Application of generalized linear models to the analysis of toxicity test data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Generalized linear models give a unified approach to the performance of regression analysis of dichotomous, count or continuous data. This paper studies binomial, negative binomial and gamma regression models and gives a detailed description of inference procedures based on them. In particular, the maximum likelihood procedure is described for a logistic function (binomial regression) or a log-linear regression model (negative binomial and gamma regression). The process of model fitting and evaluation is illustrated by examples referring to the determination of endpoints in acute and chronic toxicity tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AnscombeF. J.: 1948, ‘The Transformation of Poisson, Binomial and Negative Biomial Data’, Biometrika 38, 246–254.

    Google Scholar 

  • BardJ.: 1974, Non-Linear Parameter Estimation, New York: Academic Press.

    Google Scholar 

  • Barndorff-NielsenO.: 1978, Information and Exponential Families in Statistical Theory, New York: Wiley.

    Google Scholar 

  • CoxC.: 1987, ‘Threshold Dose-Response Models in Toxicology’, Biometrics 43, 511–523.

    PubMed  Google Scholar 

  • CrosslandN. O.: 1985, ‘A Method to Evaluate Effects of Toxic Chemicals on Fish Growth’, Chemosphere 14, 1855–1870.

    Article  Google Scholar 

  • El-ShaarawiA. H., MaulA. and BlockJ. C.: 1987, ‘Application of Poisson Regression to the Analysis of Bacteriological Data’, Water Poll. Res. J. Canada 22, 298–307.

    Google Scholar 

  • EngelJ.: 1984, ‘Models for Response Data Showing Extra-Poisson Variation’, Statist. Neerlandica 38, 159–167.

    Google Scholar 

  • FromeE. L.: 1983, ‘The Analysis of Rates Using Poisson Regression Models’, Biometrics 39, 665–674.

    PubMed  Google Scholar 

  • FromeE. L., KutnerM. H. and BeauchampJ. J.: 1973, ‘Regression Analysis of Poisson-Distributed Data’, J. Amer. Statist. Assoc. 68, 935–940.

    Google Scholar 

  • Gelber, R. D., Lavin, P. T., Mehta, C. R. and Schoenfeld, D. A.: 1985, ‘Statistical Analysis’, In Fundamentals of Aquatic Toxicology, Rand, G. M. and Petrocelli, S. R. (Eds.), pp. 110–123. Hemisphere.

  • LawlesJ. F.: 1987, ‘Negative Binomial and Mixed Poisson Regression’, Can. J. Statist. 15, 209–225.

    Google Scholar 

  • MaulA., El-ShaarawiA. H. and FérardJ. F.: 1991, ‘Application of Negative Binomial Regression Models to the Analysis of Quantal Bioassay Data’, Environmetrics 2, 253–261.

    Google Scholar 

  • MaulA., VagostD. and BlockJ. C.: 1989, Stratégies d'Echantillonnage pour Analyse Microbiologique sur Réseaux de distribution d'eau, Paris: Lavoisier.

    Google Scholar 

  • McCullaghP. and NelderJ. A.: 1983, Generalized Linear Models, London: Chapman and Hall.

    Google Scholar 

  • NelderJ. A. and WedderburnR. W. M.: 1972, ‘Generalized Linear Models’ J. R. Statist. Soc. A 135, 370–384.

    Google Scholar 

  • PlackettR. L.: 1981, The Analysis of Categorical Data, 2nd ed. New York: Macmillan.

    Google Scholar 

  • ThompsonW. A. and FunderlicR. E.: 1981, ‘A Simple Threshold Model for the Classical Bioassay Problem’, BergG. G. and MaillieH. D. (eds.), Measurement of Risk, pp. 521–533, New York: Plenum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maul, A. Application of generalized linear models to the analysis of toxicity test data. Environ Monit Assess 23, 153–163 (1992). https://doi.org/10.1007/BF00406959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406959

Keywords

Navigation