Skip to main content
Log in

Maize transformation utilizing silicon carbide whiskers: a review

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

We review here the most recently developed technique for maize transformation which involves the vortexing of silicon carbide whiskers with maize cells in the presence of plasmid DNA. Fertile transgenic plants have been regenerated following whisker-mediated transformation which is compared with the alternatives described to date, namely protoplast uptake, particle bombardment and electroporation of intact tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asano Y., Y. Otsuki & M. Ugaki, 1991. Electroporation-mediated and silicon carbide whisker-mediated DNA delivery in Agrostis alba L. (Redtop). Plant Science 9: 247–252.

    Article  Google Scholar 

  • Bennetzen J.L., C. Lin, S. McCormick & B.J. Staskawicz, 1988. Transformation of Adh null pollen to Adh+ by ‘macroinjection’. Maize Genetics Cooperative Newsletter 62: 113–114.

    Google Scholar 

  • Booy G., F.A. Krens & H.J. Huizing, 1989. Attempted pollenmediated transformation of maize. J. Plant Physiol. 135: 319–324.

    CAS  Google Scholar 

  • Coe E.H. & K.R. Sarkar, 1966. Preparation of nucleic acids and a genetic transformation attempt in maize. Crop Science 6: 432–435.

    Article  CAS  Google Scholar 

  • D'Halluin K., E. Bonne, M. Bossut, M.De Beuckeleer & J. Leemans, 1992. Transgenic maize plants by tissue electroporation. The Plant Cell 4: 1495–1505.

    Article  PubMed  Google Scholar 

  • Dunahay T.G., 1993. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Bio Techniques 15: 452–460.

    CAS  Google Scholar 

  • Frame B.R., P.R. Drayton, S.V. Bagnall, C.J. Lewnau, W.P. Bullock, H.M. Wilson, J.M. Dunwell, J.A. Thompson & K. Wang, 1994. Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. The Plant Journal 6: 941–948.

    Article  CAS  Google Scholar 

  • Fromm M.E., F. Morrish, C.L. Armstrong, R. Williams, J. Thomas & T.M. Klein, 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.

    Article  PubMed  CAS  Google Scholar 

  • Fromm M.E., 1994. Production of transgenic maize plants by microprojectile-mediated gene transfer. In: M. Freeling & V. Walbot (Eds). The Maize Handbook, pp. 677–684. Springer-Verlag, New York.

    Google Scholar 

  • Gaillard A., E. Matthys-Rochon & C. Dumas, 1992. Selection of microspore derived embryogenic structures in maize related to transformation potential by microinjection. Bot. Acta 105: 313–318.

    Google Scholar 

  • Golovkin M.V., M. Abraham, S. Mórocz, S. Bottka, A. Fehér & D. Dudits, 1993. Production of transgenic maize plants by direct DNA uptake into protoplasts. Plant Science 90: 41–52.

    Article  CAS  Google Scholar 

  • Gordon-Kamm W.J., T.M. Spencer, M.L. Mangano, T.R. Adams, R.J. Daines, W.G. Start, J.V. O'Brien, S.A. Chambers, W.R. Adams, N.G. Willetts, T.B. Rice, C.J. Mackay, R.W. Krueger, A.P. Kausch & P.G. Lemaux, 1990. Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell 2: 603–618.

    Article  PubMed  CAS  Google Scholar 

  • Gould J., M. Devey, O. Hasegawa, E.C. Ulian, G. Peterson & R.H. Smith, 1991. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95: 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Graves A.C. & S.L. Goldman, 1986. The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol. Biol. 7: 43–50.

    Article  CAS  Google Scholar 

  • Greenwood N.N. & A. Earnshaw, 1984. Silicon carbide. In: Chemistry of the Elements, pp. 386–394. Pergamon Press, Oxford.

    Google Scholar 

  • Hunold R., R. Bronner & G. Hahne, 1994. Eearly events in microprojectile bombardment: cell viability and particle location. The Plant Journal 5: 593–604.

    Article  CAS  Google Scholar 

  • Kaeppler H.F., W. Gu, D.A. Somers, H.W. Rines & A.F. Cockburn, 1990. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 9: 415–418.

    Article  CAS  Google Scholar 

  • Kaeppler H.F., D.A. Somers, H.W. Rines & A.F. Cockburn, 1992. Silicon carbide fiber-mediated stable transformation of plant cells. Theor. Appl. Genet. 84: 560–566.

    Article  Google Scholar 

  • Kaeppler H.F. & D.A. Somers, 1994. DNA delivery to maize cell cultures using silicon carbide fibers. In: M. Freeling & V. Walbot (Eds). The Maize Handbook, pp. 610–613. Springer-Verlag, New York.

    Google Scholar 

  • Kivilaan A. & D.F. Blaydes, 1974. Attempts to achieve genetic transformation in plants. Michigan State University Research Report 246: 2–5.

    Google Scholar 

  • Klein T.M., M. Fromm, A. Weissinger, D. Tomes, S. Schaaf, M. Sletten & J.C. Sanford, 1988. Transfer of foreign genes into intact maize cells using high velocity microprojectiles. Proc. Natl. Acad. Sci. USA 85: 4305–4309.

    Article  PubMed  CAS  Google Scholar 

  • Klein T.M., L. Kornstein, M.E. Fromm, J.C. Sanford, 1989. Genetic transformation of maize cells by particle bombardment. Plant Physiol. 91: 440–444.

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov K., S. Mladenovic & M. Denic, 1991. Recombinant DNA technology in maize breeding. V. Plant and indigenous bacterial strains transformed by the gene controlling kanamycin resistance. Genetika (Beograd) 23: 121–135.

    Google Scholar 

  • Korohoda J. & K. Strzalka, 1979. High efficiency genetic transformation in maize induced by exogenous DNA. Z. Pflanzenphysiol. 94: 95–99.

    CAS  Google Scholar 

  • Koziel M.G., G.L. Beland, C. Bowman, N.B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, N. Desai, M. Hill, S. Kadwell, K. Launis, K. Lewis, D. Maddox, K. McPherson, M.R. Meghji, E. Merlin, R. Rhodes, G.W. Warren, M. Wright & S.V. Evola, 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11: 194–200.

    Article  CAS  Google Scholar 

  • Laursen C.M., R.A. Kryzek, C.E. Flick, P.C. Anderson & T.M. Spencer, 1994. Production of fertile transgenic maize by electroporation of suspension culture cells. Plant Mol. Biol. 24: 51–61.

    Article  PubMed  CAS  Google Scholar 

  • Mutsuddy B.C., 1990. Electrokinetic behaviour of aqueous silicon carbide whisker suspensions. J. Am. Ceram. Soc. 9: 2747–2749.

    Article  Google Scholar 

  • Mórocz S., G. Donn, J. Nemeth & D. Dudits, 1990. An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture. Theor. Appl. Genet. 80: 721–726.

    Article  Google Scholar 

  • Ohta Y., 1986. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA 83: 715–719.

    Article  PubMed  CAS  Google Scholar 

  • Petersen W.L., S. Sulc & C.L. Armstrong, 1992. Effect of nurse cultures on the production of macro-calli and fertile plants from maize embryogenic suspension culture protoplasts. Plant Cell Rep. 10: 591–594.

    Article  Google Scholar 

  • Potrykus I., 1990. Gene transfer to plants: assessment and perspectives. Physiologia Plantarum 79: 125–134.

    Article  CAS  Google Scholar 

  • Prioli L.M. & M.R. Sondahl, 1989. Plant regeneration and recovery of fertile plants protoplasts of maize (Zea mays L.). Bio/Technology 7: 589–594.

    Article  Google Scholar 

  • Rasmussen J.L., J.R. Kikkert, M.K. Roy & J.C. Sanford, 1994. Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles. Plant Cell Rep. 13: 212–217.

    Article  CAS  Google Scholar 

  • Shillito R.D., G.K. Carswell, C.M. Johnson, J.M. DiMaio & C.T. Harms, 1989. Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 7: 581–587.

    Article  Google Scholar 

  • Spencer T.M., W.J. Gordon-Kamm, R.J. Daines, W.G. Start & P. Lemaux, 1990. Bialaphos selection of stable transformants from maize cell cultures. Theor. Appl. Genet. 79: 625–631.

    Article  CAS  Google Scholar 

  • Spencer T.M., J.V. O'Brien, W.G. Start, T.R. Adams, W.J. Gordon-Kamm & P.G. Lemaux, 1992. Segregation of transgenes in maize. Plant Mol. Biol. 18: 201–210.

    Article  PubMed  CAS  Google Scholar 

  • Vain P., M.D. McMullen & J.J. Finer, 1993. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12: 84–88.

    Article  Google Scholar 

  • Wang, K., B.R. Frame, P.R. Drayton & J.A. Thompson, 1994. Silicon carbide whisker-mediated transformation: Regeneration of transgenic maize plants. In: I. Potrykus (Ed). Gene Transfer to Plants. Springer-Verlag, in press.

  • Wang, K., P.R. Drayton, B.R. Frame, J.M. Dunwell & J.A. Thompson, 1994. Whisker-mediated plant transformation: An alternative technology. In Vitro Cell. Devel. Biol., in press.

  • Wilson H.M., B.P. Bullock, J.M. Dunwell, J.R. Ellis, B.R. Frame, J.R. Register & J.A. Thompson, 1994. Maize transformation. In: K. Wang, A. Herrera-Estrella & M.Van Montagu (Eds). Transformation of Plants and Soil Microorganism, pp. 65–80. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, J.A., Drayton, P.R., Frame, B.R. et al. Maize transformation utilizing silicon carbide whiskers: a review. Euphytica 85, 75–80 (1995). https://doi.org/10.1007/BF00023932

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023932

Key words

Navigation