Skip to main content
Log in

Potato germplasm enhancement for resistance to biotic stresses at CIP. Conventional and biotechnology-assisted approaches using a wide range of Solanum species

  • Rationalism of Plant Improvement Techniques
  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Potato genetic improvement has been facilitated using new knowledge of potato reproductive biology and new techniques. Many wild diploid species as well as landrace cultivars have been used in breeding at the diploid level, a strategy which is supported by 1) 2n gametes and 2) haploids from tetraploid cultivars. Different categories of wild species which have been under-utilized are now being exploited further in more systematic enhancement programmes using semi-conventional and biotechnological methods. Molecular maps of the potato genome are used actively to achieve marker-assisted introgression and improved selection among the germplasm collections to facilitate the use of valuable wild genetic resources. As an alternative method to incorporate a high level of fesistance, genetic engineering has been employed to facilitate the initial breeding process using various gene constructs for controlling major biotic stresses in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonierbale M.W., R.L. Plaisted, O. Pineda, S.D. Tanksley, 1993. QTL analysis of trichome-mediated insect resistance in potato. Theor. Appl. Genet. 87: 973–987.

    Google Scholar 

  • Clulow S.A., M.J. Wilkinson & L.R. Burch, 1993. Solanum phureja genes are expressed in the leaves and tubers of aneusomatic potato dihaploids. Euphytica 69: 1–9.

    Article  Google Scholar 

  • Destefano-Beltran L., P. Nagpala, S. Cetiner, J.H. Dodds & J.M. Jaynes, 1990. Enhancing baoterial and fungal disease resistance in plants. In: M. Vayda & W. Park (Eds). The Molecular and Cellular Biology of the Potato. C.A.B. International, Walling ford, UK, pp. 205–221.

    Google Scholar 

  • Dodds J.H., 1991. Molecular Methods for Potato Improvement. Rept. Plant. Conf. ‘Application of Molecular Techniques to Potato Germplasm Enhancement’. CIP, Lima, 181 p.

    Google Scholar 

  • Dodds J.H. & J.M. Jaynes, 1987. Crop plant genetic engineering: Science Fiction to science fact. Outlook on Agriculture 16 (3): 111–115.

    CAS  Google Scholar 

  • Hermsen J.G.Th., 1987. Efficient utilization of wild and primitive species in potato breeding. In: G.J. Jellis & D.E. Richardson (Eds). The Production of New Potato Varieties. Technological Advances, Cambridge University Press, London, pp. 172–185.

    Google Scholar 

  • Hermsen J.G.Th. & J. Verdenius, 1973. Selection from Solanum tuberosum group Phureja of genotypes combining high frequency haploid induction with homozygosity for embryo spot. Euphytica 22: 244–259.

    Article  Google Scholar 

  • Iwanaga M., R. Freyre & K. Watanabe, 1991. Breaking the crossability barriers between disomic tetraploid Solanum acaule and tetrasomic tetraploid S. tuberosum. Euphytica 52: 183–191.

    Article  Google Scholar 

  • Iwanaga M., P. Jatala, R. Ortiz & E. Guevara, 1989. Use of FDR 2n pollen to transfer resistance to root-knot nematodes into cultivated 4× potatoes. J. Amer. Soc. Hort. Sci. 114: 1008–1013.

    Google Scholar 

  • Johnston S.A., T.P.M.den Nijs, S.J. Peloquin & R.E. HanemannJr., 1980. The significance to genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 57: 5–9.

    Google Scholar 

  • Kesseli R.V., I. Paran & R.W. Michelmore, 1992. Efficient mapping of specifically targeted genomic regions and the tagging of these regions with reliable PCR-based genetic markers. Proc. Symp. Applications of RAPD Technology to Plant Breeding. CSSA-ASHS-AGA, Minneapolis, Minnesota, Nov. 1, 1992, p. 31–36.

    Google Scholar 

  • Leonards-Schippers, C.W. Gieffers, R. Schäfer-Pregl, E. Ritter, S.J. Knapp, F. Salamini & C. Gebhardt, 1994. Quantitative resistance to Phytophthora infestans in potato: A case study for QTL mapping in an allogamous plant species. Genetics 137: 67–77.

    PubMed  CAS  Google Scholar 

  • Lesser W. & A.P. Maloney, 1993. Biosafety: A report on regulatory approaches for the deliberate release of genetically-engineered organisms. Cornell International Institute for Food, Agriculture and Development, Ithaca, USA, 68 pp.

    Google Scholar 

  • Macer, D.R.J., 1994. Attitude to genetic Engineering Eubios Ethics institute, Christchurch, New Zealand, 164 pp.

  • Ordz R., M. Iwanaga, K.V. Raman & M. Palacios, 1990. Breedding for resistance to potato tuber moth, Phthorimaea opercullela (Zeller), in diploid potatoes. Euphytica 50: 119–126.

    Article  Google Scholar 

  • Ordz R., M. Iwanaga & S.J. Peloquin, 1994. Breeding potatoes for developing countries using wild tuber bearing Solanum spp. and ploidy manipulations. J. Genet. & Breed. 48: 89–98.

    Google Scholar 

  • Peferoen M., 1992. Engineering of insect-resistant plants with Bucillus thuringiensis crystal protein genes. In: A.M.R. Gatehouse, V.A. Hilder & D. Boulter (Eds). Plant Genetic manipulation for Crop Protection. C.A.B. International, Walling ford, UK, pp. 135–154.

    Google Scholar 

  • Peloquin S.J., G.L. Yerk, J.E. Werner & E. Darmo, 1989. Potato ploidy manipulation with haploid and 2n gametes. Genome 31: 1000–1004.

    Google Scholar 

  • Persley G.L.V., V. Giddings & C. Juma, 1992. Biosafety—The safe application of biotechnology in agriculture and the environmnent. International Service for national Agricultural research. The Hague, The Netherlands, 39 pp.

    Google Scholar 

  • Ritrer E., T. Debener, A. Barone, F. Salamini & C. Gebhardt, 1991. RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Mol. Gen. Genet. 227: 81–85.

    Article  Google Scholar 

  • Rose H., 1986. Potato Breeding-Problem and Perspectives. Verlag Paul Parey, Berlin, 132 pp.

    Google Scholar 

  • Tanksley S.D., M.W. Ganal, J.P. Prince, M.C.de Vicente, M.W. Bonierbale, P. Broun, T.M. Fulton, J.J. Giovannonis, S. Grandillo, G.B. Martin, R. Messeguer, J.C. Miller, A.H. Paterson, O. Pineda, M.S. Röder, R.A. Wing, W. Wu & N.D. Young, 1992. High density molecular maps of the tomato and potato genomes. Genetics 132: 1141–1160.

    PubMed  CAS  Google Scholar 

  • Valkonen, J.P.T., S.A. Slack & K.N. Watanabe, 1994a. Resistance to potato cucumber mosaic virus. Ann. Appl. Biol. Accepted.

  • Valkonen J.P.T., K. Watanabe & E. Pehu, 1994b. Analysis of correlation between nuclear DNA content, chromosome number, and flowering capacity of asymmetric somatic hybrids of diploid S. brevidens and (d) haploid S. tuberosum. Jpn. J. Genet. 69: 525–536.

    Article  CAS  Google Scholar 

  • Valkonen J.P.T., S.A. Slack, M. Orrillo & K.N. Watanabe, 1994c. Testing virus resistances in sexual hybrids between a diploid potato breeding line and non-tuber bearing Solanum brevidens. Am. Potato J. 71: (Abstr.) 707.

    Article  Google Scholar 

  • Valkonen J.P.T., S.A. Slack, R.L. Plaisted & K.N. Watanabe, 1994d. Extreme resistance is epistatic to hypersensitive resistance to potato virus Yo in a S. tuberosum ssp. andigena-derived potato genotype. Plant Disease. 78: 1177–1180.

    Google Scholar 

  • Watanabe K., 1991. Bottlenecks in germplasm enhancement and application of the biotechnology. Proc. Plan. Conf. on the Application of Biotechnology to Germplasm Enhancement to Potatoes. International Potato Center (CIP), Lima, Peru, pp. 135–140.

    Google Scholar 

  • Watanabe K., 1994a. Genome and Chromosome Manipulation in Potatoes. Advance in Plant Breeding Vol. 35, Yokendo, Tokyo, Japan, pp. 104–109 (in Japanese).

    Google Scholar 

  • Watanabe K., 1994b. Potato Molecular Genetics. In: J. Bradshaw & G. MacKay (Eds). Potato Genetics. C.A.B. International, Wallingford, UK, pp. 213–235.

    Google Scholar 

  • Watanabe K. & M. Orrillo, 1993. An alternative pretreatment method for mitotic chromosome observation. Amer. Potato J. 70: 543–548.

    Article  CAS  Google Scholar 

  • Watanabe K. & S.J. Peloquin, 1989. Occurrence of 2n pollen and ps gene frequencies in cultivated groups and their related wild species in tuber-bearing Solanums. Theor. Appl. Genet. 78: 329–336.

    Article  Google Scholar 

  • Watanabe K. & S.J. Peloquin, 1993. Cytological basis of 2n pollen formation in a wide range of 2×, 4×, and 6× taxa from tuberbearing Solanum species. Genome 36: 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K., M. Iwanaga, H. El-Nashaar & P. Jatala, 1991. Transmission mission of resistances on root-knot nematodes and bacterial wilt by 2n pollen in potatoes. Proc. 2nd. Intern. Symp. Chrom. Eng. Plant, Univ. Missouri, Columbia, MO, USA, pp. 128–132.

  • Watanabe K., C. Arbizu & P. Schmiediche, 1992a. Potato germplasm enhancement with disomic tetraploid S. acaule. I. Efficiency in introgression. Genome 35: 53–57.

    CAS  Google Scholar 

  • Watanabe K., H. El-Nashaar & M. Iwanaga, 1992b. Transmission of bacterial wilt resistance by FDR 2n pollen via 4× × 2× crosses in potatoes. Euphytica 60: 21–26.

    Google Scholar 

  • Watanabe K., M. Orrillo, S. Vega, R. Ortiz, M. Iwanaga, R. Freyre, H. El-Nashaar, K. Raman, M. Palacios, P. Jatala, E. Guevara, J. Tenorio, A. Golmirzaie, G. Yerk & S.J. Peloquin, 1993a. Germplasm enhancement with diploid potato genetic resources. I. Generation and use of haploid-wild species F1 hybrids. Am. Potato J. 70: 854 (Abstr.).

    Article  Google Scholar 

  • Watanabe K., M. Orrillo, H. El-Nashaar, K. Raman, P. Jatala, M. Palacios, E. Guevara, S. Vega, A. Hurtado, J. Tenorio & A. Golmirzaie, 1993. Germplasm enhancement with diploid potato genetic resources. II. Use of a wide range of breeding stocks. Am. Potato J. 70: 854–855 (Abstr.).

    Article  Google Scholar 

  • Watanabe K., J.H. Dodds, H. El-Nashaar, V. Zambrano, J. Benavides, F. Buitron, C. Segueñas, A. Panta, R. Salinas, S. Vega & A. Golmirzaie, 1993c. Agrobacterium mediated transformation using antibacterial genes for improving resistance to bacterial wilt in tetraploid potatoes. Am. Potato J. 70: 853–854 (Abstr.).

    Article  Google Scholar 

  • Watanabe K., M. Orrillo, S. Vega, R. Masuelli & K. Ishiki, 1994a. Potato Germplasm enhancement with disomic tetraploid Solanum acaule. II. Assessment to breeding value of tetraploid F1 hybrids between S. acaule and tetrasomic tetraploid potatoes. Theor. Appl. Genet. 88: 135–140.

    Article  Google Scholar 

  • Watanabe K., M. Orrillo, M. Iwanaga, R. Ortiz, R. Freyre & S. Perez, 1994b. Diploid germplasm derived from wild and landrace genetic resources. Am. Potato J. 71: 599–604.

    Article  Google Scholar 

  • Watanabe K., M. Orrillo, S. Vega, A. Hurtado, J.P.T. Valkonen, E. Pehu & S.D. Tanksley, 1995. Sexual hybrids between non tuber-bearing and tuber-bearing Solanum species. Genome 38: 27–35.

    PubMed  CAS  Google Scholar 

  • Wenzel G., 1994. Tissue culture. In: J. Bradshaw & G. Mackay (Eds). Potato Genetics. C.A.B. International, Wallingford, pp. 173–195.

    Google Scholar 

  • Werner J.E. & S.J. Peloquin, 1990. Inheritance and two mechanisms of 2n egg formation in 2× potatoes. J. Hered. 81: 371–374.

    Google Scholar 

  • Young N.D. & S.D. Tanksley, 1988. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor. Appl. Genet. 77: 95–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K.N., Orrillo, M. & Golmirzaie, A.M. Potato germplasm enhancement for resistance to biotic stresses at CIP. Conventional and biotechnology-assisted approaches using a wide range of Solanum species. Euphytica 85, 457–464 (1995). https://doi.org/10.1007/BF00023980

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023980

Key words

Navigation