Skip to main content
Log in

Computational methods based on an energy integral in dynamic fracture

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Developments in the use of the crack tip energy flux integral in computational dynamic fracture mechanics over the past few years are reviewed. An expression for the crack tip energy flux in terms of near tip mechanical fields which is valid for general material response is derived. It is then demonstrated that certain useful energy integrals may be extracted from the general result by invoking the appropriate characterization of material response. Several alternative representations of energy flux in the form of integrals over some finite region around the crack tip are presented and compared with a view toward implementation in finite element simulation studies.

Résumé

On passe en revue les développements dans l'utilisation de l'intégrale du flux d'énergie à l'extrémité d'une fissure dans le calcul de la mécanique de la rupture dynamique et ce, au cours des 5 dernières années. On en tire une expression du flux d'énergie à l'extrémité d'une fissure en fonction du champ mécanique au voisinage de cette extrémité, expression applicable aux réactions générales d'un matériau. On démontre ensuite que certaines intégrales d'énergie intéressantes peuvent être extraites des résultats généraux en mettant en exergue les caractérisations adéquates de la réponse du matériau. Diverses représentations alternatives du flux d'énergie sous forme d'intégrale couvrant certaines régions finies autour de l'extrémité de la fissure sont présentées et comparées, en vue d'une insertion dans des études de simulation per éléments finis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Atkinson and J.D. Eshelby, International Journal of Fracture Mechanics 4 (1968) 3–8.

    Google Scholar 

  2. B.V. Kostrov and L.V. Nikitin. Archiwum Mechaniki Stosowanej 22 (1970) 749–775.

    Google Scholar 

  3. L.B. Freund, Journal of Elasticity 2 (1972) 341–349.

    Google Scholar 

  4. L.E. Malvern, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall (1969) 210–211.

  5. J.D. Eshelby, in Inelastic Behavior of Solids, edited by M.F. Kanninen et al. McGraw-Hill (1970) 77–115.

  6. J.R. Willis, The Mechanics and Physics of Fracture, The Metal Society (1975) 57–67.

  7. K. Kishimoto, S. Aoki and M. Sakata, Engineering Fracture Mechanics 13 (1980) 387–394.

    Google Scholar 

  8. S. Aoki, K. Kishimoto and M. Sakata, Engineering Fracture Mechanics 20 (1984) 827–836.

    Google Scholar 

  9. S.N. Atluri, Engineering Fracture Mechanics 16 (1982) 341–364.

    Google Scholar 

  10. T. Nishioka and S.N. Atluri, Engineering Fracture Mechanics 18 (1983) 1–22.

    Google Scholar 

  11. T. Nishioka and S.N. Atluri, Engineering Fracture Mechanics 18 (1983) 23–33.

    Google Scholar 

  12. T. Nishioka and S.N. Atluri, AIAA Journal 12 (1984) 409–414.

    Google Scholar 

  13. L.B. Freund, in Mechanics Today, Vol. III, edited by S. Nemat-Nasser Pergamon (1976) 55–91.

  14. J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 1516 (1968) 13–31.

    Google Scholar 

  15. J.R. Rice and G.F. Rosengren, Journal of the Mechanics and Physics of Solids 16 (1968) 1–12.

    Google Scholar 

  16. J.D. Achenbach and N. Nishimura, “Effect of inertia on finite near tip deformation for fast mode III crack growth”, Journal of Applied Mechanics (to appear).

  17. J.K. Knowles and E. Sternberg, Journal of Elasticity 10 (1980) 81–110.

    Google Scholar 

  18. J.R. Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  19. J.R. Rice, in Proceedings of the 8th US National Congress of applied Mechanics, edited by R.E. Kelley, Western Periodicals, No. Hollywood, CA (1979) 191–216.

  20. J.W. Hutchinson, Journal of Applied Mechanics 50 (1983) 1042–1051.

    Google Scholar 

  21. L.B. Freund and J.W. Hutchinson, “High strain-rate crack growth in rate dependent plastic solids”, Journal of the Mechanics and Physics of Solids (to appear).

  22. ABAQUS, Hibbitt, Karlsson and Sorenson, Inc., Providence, Rhode Island.

  23. H.M. Miller, T.J.R. Hughes and R.L. Taylor, Earthquake Engineering and Structural Dynamics 5 (1972) 129–140.

    Google Scholar 

  24. C.F. Shih and A. Needleman, Journal of Applied Mechanics 51 (1984) 48–56.

    Google Scholar 

  25. T. Nakamura, C.F. Shih and L.B. Freund, “Elastic plastic analysis of a dynamically loaded circumferentially notched round bar”, Engineering Fracture Mechanics (to appear).

  26. L.B. Freund, Journal of the Mechanics and Physics of Solids 21 (1973) 47–61.

    Google Scholar 

  27. L.R. Freund, Journal of the Mechanics and Physics of Solids 20 (1972) 129–140.

    Google Scholar 

  28. R.S. Barsoum, International Journal on Numerical Methods in Engineering 11 (1977) 85–98.

    Google Scholar 

  29. G. Rydholm, B. Fredriksson and F. Nilsson, in Numerical Methods in Fracture Mechanics, edited by A.R. Luxmoore and D.R.J. Owens, University of Swansea, Swansea, Wales (1978) 660–672.

    Google Scholar 

  30. J.F. Malluck and W.W. King, in ASTM STP 711, American Society for Testing and Materials (1980) 38–53.

  31. J.R. Rice, P.C. Paris and J.G. Merkle, in ASTM STP 536, American Society for Testing and Materials (1973) 231–245.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, T., Shih, C.F. & Freund, L.B. Computational methods based on an energy integral in dynamic fracture. Int J Fract 27, 229–243 (1985). https://doi.org/10.1007/BF00017970

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017970

Keywords

Navigation