Skip to main content
Log in

A 3-D finite element analysis of a chevron-notched, three-point bend fracture specimen for ceramic materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A 3-D finite element analysis of a chevron-notched, three-point bend specimen was used to determine the load point displacement (LPD) and the crack mouth opening displacement (CMOD) for four initial crack-depth-to-width ratios of the chevron notch. Relations between the LPD and CMOD specimen compliances, as functions of crack length, were developed and the LPD compliance versus crack length relations were compared with previous analyses. In addition, the LPD compliance versus crack length relations are used to modify previously developed geometry correction factors for the stress intensity factor.

The LPD/CMOD relations are then applied to calculate the LPD from the CMOD measured during the fracture testing of silicon nitride and silicon carbide chevron-notched, three-point bend specimens. The work-of-fracture values for the two ceramic materials are compared using the calculated and the measured LPD. The fracture toughness values are compared as calculated from the modified and the unmodified geometry correction factors for the stress intensity factor. Finally, the crack growth resistance curves are determined from the fracture test data.

Résumé

Sur une éprouvette de flexion sur trois points entaillée en chevron, on a fait usage de l'analyse par éléments finis à trois dimensions pour déterminer le déplacement au point d'application de la charge (LPD) et le déplacement d'ouverture des bords de la fissure (CMOD) correspondant à quatre rapports de profondeur sur largeur de fissure pour l'entaille en chevron. On a établi les relations de compliance entre le LPD et le CMOD en fonction de la longueur de fissure et on a comparé les relations de compliance entre le LPD et la longueur de fissuration avec celles résultant d'analyses antérieures. En outre, ces dernières relations ont été utilisées en vue de modifier les coefficients de correction géométrique précédemment établis pour le facteur d'intensité de contrainte.

On applique ensuite les relations LPD/CMOD au cacul du LPD à partir du CMOD mesuré au cours d'essais de rupture en flexion sur trois points d'éprouvettes en nitrure de silicium et en carbure de silicium entaillées en chevron. On compare les valeurs du travail de rupture des deux matériaux céramiques en utilisant les valeurs de LPD calculées et mesurées. On compare les valeurs de la ténacité à la rupture obtenues par le calcul à partir des coefficients de correction de la géométrie modifiés ou non modifiés. Enfin, on détermine les courbes de résistance à la croissance des fissures à partir des données de rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. American Society for Testing and Materials, Standard Method for Plane Strain Fracture Toughness of Metallic Materials, ASTM E 399–83, Philadelphia, PA (1983).

  2. R.W. Davidge and G. Tappin, in Proceedings of the British Ceramic Society 15 (1970) 47–60.

  3. J.C. Newman, in Chevron-Notched Specimens: Testing and Stress Analysis, ASTM STP 855 (1984) 5–31.

  4. I.S. Raju, J.C. Newman, Jr, in Chevron-Notched Specimens: Testing and Stress Analysis, ASTM STP 855 (1984) 32–48.

  5. D. Munz, R.T. Bubsey and J.E. Srawley, International Journal of Fracture 16 (1980) 359–374.

    Google Scholar 

  6. A.R. Ingraffea, R. Perucchio, T.-Y. Han, W.H. Gerstle and Y.-P. Huang, in Chevron-Notched Specimens: Testing and Stress Analysis, ASTM STP 855 (1984) 49–68.

  7. R.T. Bubsey, D. Munz, W.S. Pierce and J.L. ShannonJr., International Journal of Fracture 18 (1982) 125–133.

    Google Scholar 

  8. M. Sakai and K.K. Yamasaki, Journal of the American Ceramic Society 66 (1983) 371–375.

    Google Scholar 

  9. Wu Chang-Xian, in chevron-Notched Specimens: Testing and Stress Analysis, ASTM STP 855 (1984) 176–192.

  10. D.G. Munz, J.L. ShannonJr. and R.T. Bubsey, International Journal of Fracture 16 (1980) R137-R141.

    Google Scholar 

  11. I. Bar-On, F.R. Tuler and I. Roman, in Chevron-Notched Specimens: Testing and Stress Analysis, ASTM STP 855 (1984) 92–113.

  12. J.I. Bluhm, Engineering Fracture Mechanics 7 (1975) 593–604.

    Google Scholar 

  13. M.G. Jenkins, A.S. Kobayashi, M. Sakai, K.W. White and R.C. Bradt, Fracture Toughness Testing of Ceramics Using a Laser Interferometric Strain Gage,” submitted to the American Ceramic Society.

  14. J. Nakayama H. Abe and R.C. Bradt, Journal of the American Ceramic Society 64 (1981) 671–675.

    Google Scholar 

  15. D. Munz, R.T. Bubsey and J.L. ShannonJr., Journal of the American Ceramic Society 63 (1980) 300–305.

    Google Scholar 

  16. L.P. Pook, International Journal of Fracture Mechanics 8 (1972) RCR 103–108.

    Google Scholar 

  17. J. Nakayama, Japanese Journal of Applied Physics 3 (1964) 422–423.

    Google Scholar 

  18. H.G. Tattersall and G. Tappin, Journal of Materials Science 1 (1966) 296–301.

    Google Scholar 

  19. H. Tada, P. Paris and G. Irwin, The Stress Analsysis of Cracks Handbook, Del Research Corporation, Hellertown, Pennsylvania (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, M.G., Kobayashi, A.S., White, K.W. et al. A 3-D finite element analysis of a chevron-notched, three-point bend fracture specimen for ceramic materials. Int J Fract 34, 281–295 (1987). https://doi.org/10.1007/BF00013083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013083

Keywords

Navigation