Skip to main content
Log in

Plane elastostatic analysis of V-notched plates

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

Solutions are given for several plane elastostatic problems of plates having a V-notch on one edge, and subjected to a variety of boundary conditions. The effect of the magnitude of the V-notch angle and specimen geometry on stress intensity factors K I and K II are obtained for unloaded notch surfaces. There is less than one percent difference in opening mode I stress intensity factor in going from a zero degree notch angle to a 30 degree notch angle.

Notch opening displacements at the plate edge were measured experimentally and the results obtained were in excellent agreement with the computed results.

Résumé

On fournit des solutions à divers problèmes statiques, en conditions planes et élastiques, relatifs à des tôles entaillées en vé sur un de leurs bords et soumises a diverses conditions aux limites.

On examine l'influence de l'ouverture de l'angle de l'entaille et de la géométrie de l'éprouvette sur les facteurs d'intensité de contraintes K I et K II dans les cas où les surfaces de l'entaille ne sont pas sollicitées, et l'on conclut que, lorsque l'angle de l'entaille passe de zéro à 30 degrés, le facteur d'intensité des contraintes K I se modifie de moins d'un pour cent.

Des mesures de déplacement d'ouverture d'entaille ont été effectuées, et les résultats obtenus sont en excellent accord avec les resultats des calculs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Brown, Jr., and J. E. Srawley, Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM Special Technical Publication No. 410, (1966).

  2. ASTM Committee E-24 On Fracture Testing of Metals, Proposed Method of Test for Plane-Strain Fracture Toughness of Metallic Materials, 1969 Book of ASTM Standards, Part 31, pp. 1099–1114.

  3. B. Gross, J. E. Srawley, and W. F. Brown, Jr., “Stress Intensity Factors for a Single-edge-notch Tension Specimen by Boundary Collocation of a Stress Function”, NASA TN D-2395,1964.

  4. J. H. A. Brahtz, “Stress Distribution in a Reentrant Corner”, Journal of Applied Mechanics, 1, 2 (1933) 31–38.

    Google Scholar 

  5. H. M. Westergaard, “Stress at a Crack, Size of the Crack, and Bending of Reinforced Concrete”, Journal of the American Concrete Institute, 5, 2 (1933) 93–102.

    Google Scholar 

  6. M. L. Williams, Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension, Journal of Applied Mechanics, 19, 4 (1952) 526–528.

    Google Scholar 

  7. M. L. Williams, On the Stress Distribution at the Base of a Stationary Crack, Journal of Applied Mechanics, 24, 1 (1957) 109–114.

    MATH  Google Scholar 

  8. B. Gross and J. E. Srawley, Stress Intensity Factors for Single-Edge-Notch Specimens in Bending or Combined and Tension by Boundary Collocation of a Stress Function, NASA TN D-2603,(1965).

  9. A. M. Sullivan, New Specimen Design for Plane Strain Fracture Toughness Tests, Materials Research and Standards, 4, 1 (1964) 20–24.

    MathSciNet  Google Scholar 

  10. J. D. Lubahn, Experimental Determination of Energy Release Rate for Notched Bending and Notched Tension, Proceedings of the ASTM, 59 (1959) 885–913.

    Google Scholar 

  11. J. E. Srawley, M. H. Jones, and B. Gross, Experimental Determination of the Dependence of Crack Extension Force on Crack Length for a Single-Edge-Notch Tension Specimen, NASA TN D-2396,1964.

  12. M. H. Jones, R. T. Bubsey, and W. F. Brown, Jr., (proposed NASA Technical Note).

  13. A. S. Kobayashi, Method of Collocation Applied to Edge Notched Finite Strip Subjected to Uniaxial and Pure Bending, Boeing Company Report D2-23551, August, 1964.

  14. L. A. Wiggelsworth, Stress Distribution in a Notched Plate, Mathematika, 4 (1957) 76–96.

    MathSciNet  Google Scholar 

  15. H. F. Buecker, Weight Functions for the Notched Bar, General Electric Co. Report, 69-LS-45, May 12,1969.

  16. B. Gross, Some Plane Problem Elastostatic Solutions for Plates Having a V-Notch, Case Western Reserve University, Ph. D. Thesis, 1970.

  17. B. Gross, E. Roberts, Jr., and J. E. Srawley, Elastic Displacements for Various Edge Cracked Plate Specimens, The International Journal of Fracture Mechanics, 4, 3 (1968) 267–276; also see NASA TN D-4232,1967. Errata relating to this paper Int. Journ. of Fracture Mech. 6 (1970) 87.

    Google Scholar 

  18. A. P. Moser, Elastic Stress Fields and Stress Intensity Factor For Finite Bodies, University of Colorado, Ph. D. Thesis, 1967.

  19. G. R. Irwin, Analysis of Stresses and Strains Near End of a Crack, Journal Applied Mechanics, 24, 3 (1957) 361–364.

    Google Scholar 

  20. L. E. Hulbert, The Numerical Solution of Two Dimensional Problems of the Theory of Elasticity, Ph. D. Thesis, Ohio State Univ., (1963).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, B., Mendelson, A. Plane elastostatic analysis of V-notched plates. Int J Fract 8, 267–276 (1972). https://doi.org/10.1007/BF00186126

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186126

Keywords

Navigation