Skip to main content
Log in

Some characteristics of the XO mouse (Mus musculus L.) II. Reproduction: fertility and gametic segregation

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A preliminary investigation of reproductive capacity in XO mice showed that they produced smaller litters than normal litter mates. More time elapsed between successive litters when kept in the presence of a male except during pregnancy and weaning. This lower level of reproduction is manifest during the whole reproductive period. Also reproductive capacity in XO mice reaches its maximum and minimum (end of reproductive period) earlier than in normals.

Further study also demonstrated an underdevelopment of the ovaries-the whole ovary, as well as the numbers of maturing and mature follicles, are smaller in XO mice than in controls. Since these differences can be corrected by unilateral ovariectomy, they appear to be under control of extra-ovarial factors, e.g. of gonadotropic hormone(s). The data also suggest depression of activity in the oestrogen-producing system, and in general that the lower reproductivity of XO mice may be attributed to a diminished secretion of gonadotropic hormones together with a smaller number of primordial germ cells in XO mice.

The segregation from XO parents seems to favor transmission of X-gametes in young mothers, with however the preference for X tending to decrease with parental age. Since the data tend to rule out postzygotic selection effects, the excess of X-bearing gametes may relate to meiotic drive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almqvist L., Hall K., Lindsten S., Lindsten J., Luft R. & Sjöberg H. E., 1964. Effects of short term administration of physiological doses of human growth hormone in three patients with Turners's syndrome. Acta endoer., Copenh. 46: 451.

    Google Scholar 

  • Atalla F. & Reinecke E. P., 1951. Influence of environmental temperature and thyroid states on reproductive organs of young female mice. Fedn Proc. Fedn Am. Socs exp. Biol. 10: 6–7.

    Google Scholar 

  • Brambell F. W. R., 1956. Ovarian changes. In: Marshall's physiology of reproduction I, A. S. Parker, ed., Longmans Green, London.

    Google Scholar 

  • Cattanach B. M., 1962. XO mice. Genet. Res. 3: 487–490.

    Google Scholar 

  • Cavalll-Sforza L., 1965. Grundbegriffe der Biometrie, Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Deckers J. F. M., 1971. De XO muis als object voor genfysiologisch onderzoek. Genen Phaenen 14: 47–48. (The Xo mouse as an object for genphysiological investigation. Genetics Abstracts G6730.)

    Google Scholar 

  • Deckers J. F. M. & Van der Kroon P. H. W., 1981. Some characteristics of the XO mouse (Mus musculus). I. Vitality: growth and metabolism. Genetica 57: 3–11.

    Google Scholar 

  • Dunn L. C., 1953a. Variations in the segregation ratio as causes of variations of gene frequency. Acta genet. Statist. med. 4: 139–147.

    Google Scholar 

  • Dunn L. C. & Gluecksohn-Waelsch S., 1953b. Genetic analysis of seven newly discovered mutant alleles at locus T in the house mouse. Genetics 38: 261–271.

    Google Scholar 

  • Dunn L. C. & Suckling J., 1956. Studies on the genetic variability in wild populations of house mice. I. Analysis of seven alleles at locus T. Genetics 41: 344–352.

    Google Scholar 

  • Dunn L. C., 1956. Analysis of a complex gene in the house mouse. Cold Spring Harb. Symp. quant. Biol. 21: 187–195.

    Google Scholar 

  • Dunn L. C. & Bennett D., 1968. A new case of transmission ratio distortion in the house mouse. Proc. natn. Acad. Sci. U.S.A. 61: 570–573.

    Google Scholar 

  • Epstein C. J., 1969. Mammalian oocytes: X-chromosome activity. Science 163: 1078–1079.

    Google Scholar 

  • Evans H. M. & Simpson M. E., 1950. In: Hormones, G. Pineus and K. V. Thimann, eds., Vol. II, Academic Press Inc., New York.

    Google Scholar 

  • Falck B., 1959. Site of production of oestrogen in rat ovary as studied in microtransplants. Acta physiol. scand. 47, suppl. 163: 1–101.

    Google Scholar 

  • Fetzer S., Hillebrecht J., Muschke H. E. & Tonutti E., 1955. Hypophysäre Steuerung der Interstitiellen Zellen des Rattenovariums quantitativ betrachtet an Zellkernvolumen. Z. Zellforsch. 43: 404–420.

    Google Scholar 

  • Glagoleff A. A., 1934. Quantitative analysis with the microscope by the point method. Engng. Min. J. 135: 339.

    Google Scholar 

  • Greep R. O., Van Dyke H. B. & Chow B. F., 1941. Gonadotropins of the swine pituitary. I. Various biological effects of purified thylakentrin (FSH) and pure metakentrin (LH). Endocrinology 30: 635–649.

    Google Scholar 

  • Grossmann E. R., 1960. Pituitary gonadotropins in gonadal dysgenesis. Age of appearance and variability in amount of follicle-stimulating hormone (FSH) in urine. Pediatrics 25: 298.

    Google Scholar 

  • Hauser G. A., 1963. Gonadal dysgenesis. In: Intersexuality, C. Overzier, ed., Academic Press. London and New York.

    Google Scholar 

  • Jones E. C. & Krohn P. L., 1959. Influence of the anterior pituitary on the ageing process in the ovary. Nature, Lond. 183: 1155–1158.

    Google Scholar 

  • Kaufman M. H., 1972. Non-random segregation during mammalian oogenesis. Nature, Lond. 238: 465–466.

    Google Scholar 

  • Kroon P. H. W.Van der & Kieken J., 1976. Adaptation of the binocular microscope for estimating areas and volumes by the ‘Point Counter’ method. Microscop. Acta 77: 445–448.

    Google Scholar 

  • Lindsten, J. & Fraccare, M., 1969. Turner's Syndrome. In: Selected topics on genital anomalies and related subjects, C. C. Thomas, ed., Springfield, Illinois, U.S.A.

  • Lyon M. F., 1961. Gene action in the X-chromosome of the mouse. Nature, Lond. 190: 372–373.

    Google Scholar 

  • Lyon M. F. & Hawker S. G., 1973. Reproductive lifespan in irradiated and unirradiated chromosomally XO mice. Genet. Res. 21: 185–194.

    Google Scholar 

  • Merkle U., 1962. Untersuchungen über den Einfluss synthetischer Gestagene auf dle LH-Aktivität der Hypophyse. Verh. Anat. Ges. Jena, 111: 132–134.

    Google Scholar 

  • Morris T., 1968. The XO and OY chromosome constitutions in the mouse. Genet. Res. 12: 125–137.

    Google Scholar 

  • Ohno, S., 1963. Life history of female germ cells in mammals. Second International Conference on Congenital Malformations. New York. Int. Med. Congr., 36–42.

  • Ohno S., Stenius C. & Christian L., 1966. The XO is the normal female of the creeping vole (Microtus oregoni). In: Chromosomes Today, C. D. Darlington & K. R. Lewis, eds., Oliver & Boyd, Edinburgh, vol. I: 182–187.

    Google Scholar 

  • Ohno S., 1967. Monographs on endocrinology, vol. 1. Sex chromosomes and sex-linked genes. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Palkovits M. & Fischer J., 1968. Karyometric investigations. Akad. Kiadó, Budapest.

    Google Scholar 

  • Pedersen T., 1969. Follicle growth in the immature mouse ovary. Acta endocr., Copenh. 32: 117–132.

    Google Scholar 

  • Peters H., 1969. The development of the mouse ovary from birth to maturity. Acta endocr., Copenh. 62: 98–116.

    Google Scholar 

  • Romeis B., 1948. Mikroskopische Technik, Leipzig Verlag, München.

    Google Scholar 

  • Russell W. L., Russell L. B. & Gower J., 1959. Exceptional inheritance of sex-linked gene in the mouse explained on the basis that XO sex-chromosome constitution is female. Proc. natn. Acad. Sci. U.S.A. 45: 554–556.

    Google Scholar 

  • Soliman F. A. & Ghanem Y. S., 1956. Levels of thyrotrophic and gonadotrophic hormones in the blood of mature and immature female rabbits. Nature, Lond. 156: 745.

    Google Scholar 

  • Soliman F. A. & Ghanem Y. S., 1957. Thyrotrophic and gonadotrophic hormone contents of pituitaries and blood of dogs during the winter and summer. Nature, Lond. 179: 102.

    Google Scholar 

  • Welshons W. J. & Russell L. B., 1959. The Y-chromosome as the bearer of male determining factors in the mouse. Proc. natn. Acad. Sci. U.S.A. 45: 560–566.

    Google Scholar 

  • Zimmering S., Sandler L. & Nicoletti B., 1970. Mechanisms of meiotic drive. A. Rev. Genet. 4: 409–436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deckers, J.F.M., van der Kroon, P.H.W. & Douglas, L.T. Some characteristics of the XO mouse (Mus musculus L.) II. Reproduction: fertility and gametic segregation. Genetica 57, 3–11 (1981). https://doi.org/10.1007/BF00057537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00057537

Keywords

Navigation