Skip to main content
Log in

Functional and structural units in the chromomere

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Electron microscopic observations demonstrate the existence of several DNA packing levels in the chromomere. A linear DNA molecule forms a big (chromomere) loop anchored to the chromosomal scaffold. The loop forms a set of smaller loops in the rosette pattern. Packing of the DNA by the histone octamer particles results in nucleosomes and nucleomeres. To establish the possible correspondence between the structural units of a chromomere and the genetical units (genes, exons, introns) in it, we compared the lengths of the units. Statistical analysis of the 315 sequenced genes indicate that the average gene size corresponds to the average length of a rosette loop. It means that a chromomere contains one or more genes. Assuming that exon-intron boundaries cannot bind nucleosomes we constructed DNA-packing models of the 88 genes. They demonstrate that the first (in 77.8 per cent of the genes) and the last (in 52.7 per cent) exons of the genes are too short to bind nucleosomes. Many genes contain long (nucleosome binding) pieces of DNA. Long packed pieces are introns in vertebrates; they are exons in invertebrates and plants. The average size gene contains two nucleomeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ascoli C. A., Link M. R., Venturo N., Kuchler R. J., Mandeles S., 1988. Identification of a rosette-enriched chromatin fraction from mouse fibroblast nuclei. Arch. Biochem. and Biophys. 263: 334–348.

    Google Scholar 

  • Beermann, W., 1972. Chromomeres and genes. In: Results and problems in cell differentiation. N.Y.-Berlin 4: 1–33.

  • Gasser S. M. & Laemmli U. K., 1987. A glimpse at chromosomal order. Trends in Genetical 3: 16–22.

    Google Scholar 

  • Georgiev G. P. & Bakayev V. V., 1978. Three levels of structural organization of the eukariotic chromosomes. Mol. Biol. USSR 12: 1205–1230.

    Google Scholar 

  • Glazkov M. V., 1988. Structural and functional organization of DNA in the interphase nucleus: A structural aspect (a review). Mol. Biol. USSR 22: 16–30.

    Google Scholar 

  • Glazkov M. V., 1989. Ultrastructure of somatic and meiotic nucleoids. Electron Microsc. Rev. 2: 197–229.

    Google Scholar 

  • Gruzdev A. D. & Reznik N. A., 1981. Evidence for the uninemy of eukaryotic chromatids. Chromosoma 82: 1–8.

    Google Scholar 

  • Hozier I., Renz M. & Nehls P., 1977. The chromosome fiber: evidence for an ordered superstructure of nucleosomes. Chromosoma 62: 301–317.

    Google Scholar 

  • Kiryanov G. I., Manamshian T. A., Polyakov V.Yu., Fais D. & Chentsov Yu.S., 1976. Levels of granular organization of chromatin fibers. FEBS Letters 67: 323–327.

    Google Scholar 

  • Kiseleva E. V., Likhoshvay E. V., Khristolyubova N. B., Vorobyova N. V., Serdyukova N. A. & Romashchenko A. G., 1987. Electron-microscopic study of the structure of rosette-like nucleoproteid complexes isolated from Escherichia coli cells. Biopolymers and Cell USSR 3: 251–257.

    Google Scholar 

  • Kiseleva E. V., Likhoshvai E. V., Serdyukova N. A. & Khristolyubova N. B., 1986. An electron microscopic analysis of the levels of the structural organization of Escherichia coli chromosome. D.A.N. USSR 289/5: 1235–1237.

    Google Scholar 

  • Kleinschmidt A. K., 1968. Monolayer techniques in electron microscopy of nucleic acid molecules. Meth. Enzymol. 12b: 361–377.

    Google Scholar 

  • Lefevre G.Jr., 1971. Salivary chromosome bands and the frequency of crossing over in Drosophila melanogaster. Genetics 67: 497–513.

    Google Scholar 

  • Mazin A. L., 1983. Low-molecular-weight RNA of eukaryotes: biogenesis, subceliular localization, functions (Review). Mol. Biol. USSR 17: 755–783.

    Google Scholar 

  • Miller O. L. & Beatty B. R., 1969. Visualization of nuclear genes. Science 164: 955–957.

    Google Scholar 

  • Mirkovitch J., Mirault M.-E. & Laemmli U. K., 1984. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39: 223–232.

    Google Scholar 

  • Nucleotide Sequences (A compilation from the Gene Bank and EMBL Data Libraries), 1985, vol. 1–3, IRL Press, Oxford Washington DC.

  • Obukova L. V., Kiseleva E. V., Borovkov A. Yu., Kumarev V. P. & Khristolyubova N. B., 1988. Extrachromosomal DNA in brain and liver cells of normal rats. Biopolymers and Cell USSR 4: 145–150.

    Google Scholar 

  • Okada T. A. & Comings D. E., 1979. Higher order structure of chromosomes. Chromosoma 72: 1–14.

    Google Scholar 

  • Paulson J. R. & Laemmli U. K., 1977. The structure of histonedepleted metaphase chromosomes. Cell 12: 817–828.

    Google Scholar 

  • Pederson D. S., Thoma F. & Simpson R. T., 1986. Core particle, fiber, and transcriptionally active chromatin structure. Ann. Rev. Cell Biol. 2: 117–147.

    Google Scholar 

  • Pederson T. & Bhorjee J. S., 1979. Evidence for a role of RNA in eukaryotic chromosomes structure. Metabolically stable, small nuclear RNA species are covalently linked to chromosomal DNA in HeLa cells. J. Mol. Biol. 128: 451–480.

    Google Scholar 

  • Solovyov V. V. & Kolchanov N. A., 1985. Exon-intron structure of eukaryotic genes may be caused by nucleosome organization of chromatin and autoregulation of gene expression. D.A.N. USSR 284/1: 232–237.

    Google Scholar 

  • Strätling W. H. & Klingholz R., 1981. Supranucleosomal structure of chromatin: digestion by calcium/magnesium endonuclease proceeds via a discrete size class of particles with elevated stability. Biochem. 20: 1386–1302.

    Google Scholar 

  • Trifonov E. N., 1982. Sequence-dependent variations of B-DNA structure and protein-DNA recognition. Cold Spring Harbour Symp. Quant. Biol. ILVII: 271–278.

    Google Scholar 

  • Zatsepina O. V., Polyakov V.Yu. & Chetsov Yu.S., 1983. An electron microscopic study of chromonema and chromomeres in mitotic and interphase chromosomes. Cytology USSR 25: 123–129.

    Google Scholar 

  • Zhimulev I. F., Belyaeva E. S. & Semeshin V. F., 1981. Informational content of polytene chromosome bands and puffs. Critical Reviews in Biochemistry 11: 303–340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznik, N.A., Yampol, G.P., Kiseleva, E.V. et al. Functional and structural units in the chromomere. Genetica 83, 293–299 (1991). https://doi.org/10.1007/BF00126235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126235

Keywords

Navigation