Skip to main content
Log in

Restriction site patterns in the ribosomal DNA of Camelidae

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The restriction map of rDNA from South American camelids and the Bactrian camel was analyzed by digestion of high-molecular-weight DNA with endonucleases EcoRI, BamHI and the two combined followed by Southern blot hybridization with probes for the 18S and 28S rDNA sequences. We scored a total of 17 restriction sites, six of which were mapped conserved in all the species. The other eleven corresponded to spacer regions and revealed variations between these taxa. The study showed that the two groups differ in the length of the internal transcribed spacer. Also they showed the existence of two regions of fast evolution on the opposite termini of the external spacer. A restriction site present at low frequency in the non-transcribed spacer of guanaco and llama was the only difference encountered within the South American group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnheim, N., M. Kristal, R. Schmickel, G. Wilson, O. Ryder & E. Zimmer, 1980. Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc. Nat. Acad. Sci. USA 77: 7323–7327.

    Google Scholar 

  • Bianchi, N. O., M. L. Larramendy, M. S. Bianchi & L. Cortés, 1986. Karyological conservatism in South American camelids. Experientia 42: 622–624.

    Google Scholar 

  • Brown, D. D., P. C. Wensink & E. Jordan, 1972. A comparison of the ribosomal DNAs of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J. Mol. Biol. 63: 57–73.

    Google Scholar 

  • Bunch, T. D., W. C. Foote & A. Maciulis, 1985. Chromosome banding pattern homologies and NORs for the bactrian camel, guanaco and llama. J. Heredity 76: 115–118.

    Google Scholar 

  • Capanna, E. & M. V. Civitelli, 1965. The chromosomes of three species of neotropical Camelidae. Mammal. Chrom. News Lett. 17: 75–79.

    Google Scholar 

  • Chan, Y. L., J. Olivera & I. G. Wool, 1983. The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene. Nucl. Acids Res. 11: 7819–7831.

    Google Scholar 

  • Clark, G. C., B. W. Tague, V. C. Ware & S. A. Gerbi, 1984. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. Nucl. Acids Res. 12: 6197–6220.

    Google Scholar 

  • Erickson, J. M., C. L. Rushford, D. J. Dorney, G. N. Wilson & R. D. Schmickel, 1981. Structure and variation human ribosomal DNA: molecular analysis of cloned fragments. Gene 16: 1–9.

    Google Scholar 

  • Franklin, W. L., 1982. Biology, ecology and relationship to man of the South American camelids. In: M. A. Mares and H. H. Genoways (eds.). Mammalian biology in South America, Vol. 6. The Pymatuniang Symposia in Ecology, Pittsburgh: 457–489.

  • González, I. L., J. L. Gorski, T. J. Campen, C. D. Dorney, J. M. Erickson, J. E. Sylvester & R. D. Schmickel, 1985. Variation among human 28S ribosomal RNA genes. Proc. Natl. Acad. Sci. USA 82: 7666–7670.

    Google Scholar 

  • González, I. L. & R. D. Schmickel, 1986. The human 28S ribosomal RNA gene: Evolution and stability. Am. J. Human Genet. 38: 419–427.

    Google Scholar 

  • González, I. L., J. E. Sylvester & R. D. Schmickel, 1988. Human 28S ribosomal RNA sequence heterogeneity. Nucl. Acids Res. 16: 10213–10224.

    Google Scholar 

  • Hassouna, N., B. Michot & J. P. Bachellerie, 1984. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucl. Acids Res. 12: 3563–3585.

    Google Scholar 

  • Hillis, D. M. & S. K. Davis, 1986. Evolution of ribosomal DNA: Fifty million years of recorded history in the frog genus Rana. Evolution 40: 1275–1288.

    Google Scholar 

  • Kristal, M. & N. Arnheim, 1978. Length heterogeneity in a region of the human ribosomal gene spacer is not accompanied by extensive population polymorphism. J. Mol. Biol. 126: 91–104.

    Google Scholar 

  • Kunkel, L. M., K. D. Smith, S. H. Boyer, D. S. Borgaonkar, S. S. Wachterl, O. J. Miller, W. R. Breg, H. W. Jones & J. M. Rary, 1977. Analysis of human Y chromosome specific reiterated DNA in chromosome variants. Proc. Natl. Acad. Sci. USA 74: 1245–1249.

    Google Scholar 

  • Larramendy, M., L. Vidal-Rioja, M. Bianchi & N. O. Bianchi, 1984. Camélidos Sudamericanos: Estudios Genéticos. Boletín de Lima 35: 92–96.

    Google Scholar 

  • Lau, Y. F. & F. E. Arrighi, 1977. Comparative studies of N-banding and silver staining of NORs in human chromosomes. In M. E. Drets, N. Brum Zorrila and G. Folle (eds.) Aspects of the Chromosome Organization and Function. Monograph of Joint Seminar and Workshop. Montevideo, Uruquay: 49–55.

  • Long, E. O. & I. B. Dawid, 1980. Repeated genes in eukaryotes. Ann. Rev. Biochem. 49: 727–764.

    Google Scholar 

  • Maden, B. E. H., C. L. Dent, T. E. Farrell, J. Garde, F. S. McCallum & J. Wakeman, 1987. Clones of human ribosomal DNA containing the complete 18S-rRNA and 28S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem. J. 246: 519–527.

    Google Scholar 

  • Maniatis, T., E. F. Fritsch & J. Sambrook, 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Manuelidis, L. & D. C. Ward, 1984. Chromosomal and nuclear distribution of the HindIII 1.9 kb human DNA repeat segment. Chromosoma 91: 28–38.

    Google Scholar 

  • Meunier-Rotival, M., J. Cortadas, G. Macaya & G. Bernardi, 1979. Isolation and organization of calf ribosomal DNA. Nucl. Acids Res. 6: 2109–2123.

    Google Scholar 

  • Reed, K. C., 1986. Nucleic acid hybridizations with DNA bound to Zeta-Probe membrane. Bulletin 1234. Bio-Rad Laboratories.

  • Suzuki, H., K. Moriwaki & E. Nevo, 1987. Ribosomal DNA (rDNA) spacer polymorphism in mole rats. Mol. Biol. Evol. 4: 602–610.

    Google Scholar 

  • Vidal-Rioja, L., L. Semorile, N. O. Bianchi & J. Padrón, 1987. DNA composition in South American camelids. I. Characterization and in situ hybridization of satellite DNA fractions. Genetica 72: 137–146.

    Google Scholar 

  • Vidal-Rioja, L., M. L. Larramendy & L. Semorile, 1989. Ag-NOR staining and in situ hybridization of rDNA in the chromosomes of the South American camelids. Genetica 79: 215–222.

    Google Scholar 

  • Wheeler, J. C., 1991. Origen, evolución y status actual. In: S. Fernández-Baca. Ed. Avances y Perspectivas del Conocimiento de los Camélidos Sud Americanos. Santiago, FAO, Oficina Regional de la FAO para América Latina y el Caribe. pp. 11–48.

    Google Scholar 

  • Wilson, G. N., M. Knoller, L. Szura & R. D. Schmickel, 1984. Individual and evolutionary variation of primate ribosomal DNA transcription initiation regions. Mol. Biol. Evol. 1: 221–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semorile, L.C., Crisci, J.V. & Vidal-Rioja, L. Restriction site patterns in the ribosomal DNA of Camelidae. Genetica 92, 115–122 (1994). https://doi.org/10.1007/BF00163760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163760

Key words

Navigation