Skip to main content
Log in

Why ’very shallow‘ lakes are more successful opposing reduced nutrient loads

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

There are different approaches for classifying deep andshallowwaters using physically and ecologically derived parameters.Nevertheless, transition states make it difficult to definebordercrossing points between the two types of limnetic ecosystemsand todistinguish more precisely between different types of shallow,especially highly eutrophicated lakes. We contribute adetailedanalysis of different characteristics of shallow waters fromlakesin the Berlin/Brandenburg-region. In the catchment area of theriver Dahme in Eastern Brandenburg (Scharmützelsee-region)wefind mainly shallow and highly eutrophicated lakes, dominatedbyCyanobacteria. ’Very shallow‘ lakes of different morphometry andtopography are compared with ’medium shallow‘ or deeper lakesinthe region with similar loading characteristics for thefollowingproperties: morphometry, topography, theoretical retentiontime,mixing intensity, nutrient dynamics, external and internalloading,underwater light climate, zeu/zmix,phytoplankton development and oxygen budget. We found that’veryshallow‘ lakes in the region are more efficient in convertingtheavailable phosphorus into phytoplankton biomass because of theconstant and sufficient underwater light climate due to thefavourable relation of zeu and zmix. Weconclude that the regular mixing regime guarantees a stableandnear optimum light/dark rhythm as well as higher heterotrophicactivities, stimulating primary production up to the upperlimit ofalgal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, G., 1978. Response of phytoplankton and primary production to reduced nutrient loading in Lake Norvikken. Verh. int. Ver. Limnol. 20: 840–845.

    Google Scholar 

  • Barica, J., 1980. Why hypertrophic ecosystems? In Barica, J. & L. R. Mur (eds), Hypertrophic ecosystems. Developments in Hydrobiology 2, Dr W. Junk Publishers, The Hague.

    Google Scholar 

  • Behrendt, H., E. Driescher & G. Schellenberger, 1990. Lake Müggelsee–the use of lake water and its consequences. GeoJournal 22: 175–183.

    Google Scholar 

  • Behrendt, H. & B. Nixdorf, 1993a. Changes of Secchi depth and seston content of the Lake Müuggelsee since 1931–an example for eutrophication and feedbacks. In Guissiani, G. & C. Callieri (eds), Proceedings of the 5th Int. Conf. on the Conservation and Management of Lakes ‘Strategies for Lakes Ecosystems beyond 2000’: 30–33.

  • Behrendt, H. & B. Nixdorf, 1993b. The carbon balance of phytoplankton derived from growth, primary production and losses at different levels in Lake Müggelsee. Int. Revue ges. Hydrobiol. 78: 439–458.

    Google Scholar 

  • Behrendt, H., B. Nixdorf & W.-G. Pagenkopf, 1993. Phenomenological description of polymixis in Lake Müuggelsee. Int. Revue ges. Hydrobiol. 78: 411–421.

    Google Scholar 

  • Berger C., 1975. Occurrence of Oscillatoria agardhiiGom. in some shallow eutrophic lakes. Verh. int. Ver. Limnol. 19: 2689–2697.

    Google Scholar 

  • Berger, C., 1984. Consistent blooming of Oscillatoria agardhiiGom. in shallow hypertrophic lakes. Verh. int. Ver. Limnol. 22: 910–916.

    Google Scholar 

  • Berger, C. & H. E. Sweers, 1988. The IJsselmeer and its phytoplankton–with special attention to the suitability of the lake as a habitat for Oscillatoria agardhiiGom. J. Plankton Res. 10: 579–599.

    Google Scholar 

  • Chorus, I., 1995. Müussen in der Seensanierung Gesamtphosphat-Schwellenwerte unterschritten werden, bevor das Phytoplankton eine Reaktion zeigt? In Jäger, D. & R. Koschel (eds), Verfahren zur Sanierung und Restaurierung stehender Gewässer. Limnologie aktuell 8: 21–28.

  • Chow-Fraser, P., 1991. Use of the morphoedaphic index to predict nutrient status and algal biomass in some Canadian lakes. Can. J. Fish. aquat. Sci. 48: 1909–1918.

    Google Scholar 

  • Cochlan, W. P., N. M. Price & P. J. Harrison, 1991. Effects of irradiance on nitrogen uptake by phytoplankton: comparison of frontal and stratified communities. Mar. Ecol. Progr. Ser. 69: 103–116.

    Google Scholar 

  • Czensny, R., 1938. Die Oscillatorienerkrankung unserer Seen, Biologie und Chemismus einiger märkischer Seen. Vom Wasser 8: 36–57.

    Google Scholar 

  • Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung 1986–1993. Verlag Chemie GmbH Weinheim.

  • Ganf, G. G., 1980. Community respiration. In Le Cren, E. D. & R. H. Lowe-Mc Connell (eds), The Functioning of Freshwater Ecosystems. Cambridge University Press, Cambridge: 188–194.

    Google Scholar 

  • Gervais, F., D. Opitz & H. Behrendt, 1997. Influence of small scale turbulence and large scale mixing on phytoplankton primary production. Hydrobiologia 342/343: 95–105.

    Google Scholar 

  • Håkanson, L., 1981. A Manual of Lake Morphometry. Springer-Verlag, Berlin, Heidelberg, 78 pp.

    Google Scholar 

  • Hamm, A. (ed.), 1991. Studie über Wirkungen und Qualitätsziele von Nährstoffen in Fließgewässern. Academia Verlag, Sankt Augustin, 830 pp.

    Google Scholar 

  • Hanna, M., 1990. Evaluation of models predicting mixing depth. Can J. Fish. aquat. Sci. 47: 940–947.

    Google Scholar 

  • Jost, G, G. Klinkenberg & P. Spittler, 1992. Bacteria between grazing pressure and organic carbon limitation. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37: 233–240.

    Google Scholar 

  • Klapper, H., 1992. Eutrophierung und Gewässerschutz.–Gustav Fischer Verlag, Jena, Stuttgart, 277 pp.

    Google Scholar 

  • Klein, G., 1989. Anwendbarkeit des OECD-Vollenweider-Modells auf den Oligotrophierungsprozeß an eutrophierten Gewässern. Vom Wasser 73: 365–373.

    Google Scholar 

  • Klemer, A. & J. Barko, 1991. Effects of mixing and silica enrichment on phytoplankton seasonal succession. Hydrobiologia 210: 171–181.

    Google Scholar 

  • Köcher, B. & B. Nixdorf, 1994. Bakterien und autotrophes Picoplankton in natürlichen und künstlichen Seen der Region Berlin/Brandenburg–erste Ergebnisse.DeutscheGesellschaft für Limnologie e. V., Erweiterte Zusammenfassungen der Jahrestagung 1993 in Coburg: 284–288.

  • Kohl, J. G. & A. Nicklisch, 1981. Chromatic adaptation of the planktonic blue-green alga Oscillatoria redekeivan Goor and its ecological significance. Int. Revue ges. Hydrobiol. 66: 83–94.

    Google Scholar 

  • Kronkamp, J., F. Schanz, M. Rijkeboer, E. Berdalet, B. Kim & H. J. Gons, 1992. Influence of the mixing regime on algal photosynthetic performance in laboratory scale enclosures. Hydrobiologia 238: 111–118.

    Google Scholar 

  • Le Cren, E. D. & R. H. Lowe-Mc Connell, 1980. The functioning of freshwater ecosystems. Cambridge University Press, Cambridge, 588 pp.

    Google Scholar 

  • Mathes, J.& H. Arndt, 1994. Biomass and composition of protozooplankton in relation to lake trophy in north German lakes. Mar. Microb. Food webs, 8: 357–375.

    Google Scholar 

  • Mietz, O., 1994. Aufbau und Entwicklung eines Seenkatasters als Grundlage zur Lösung wichtiger gewässerökologischer Fragestellungen im LandBrandenburg dargestellt am Beispiel des Teupitzer Seengebietes Brandenburg. Beiträge zur angewandten Gewässerökologie Norddeutschlands 1: 10–39.

    Google Scholar 

  • Müller, H., 1952. Die produktionsbiologischen Verhältnisse märkischer Seen in der Umgebung Storkows. Z. Fisch. 1: 95–246.

    Google Scholar 

  • Nixdorf, B., 1994. Polymixis of a shallow lake (Großer Müggelsee, Berlin) and its influence on seasonal phytoplankton dynamics. Hydrobiologia 275/276: 173–186.

    Google Scholar 

  • Nixdorf, B. & H. Arndt, 1993. Seasonal dynamics of plankton components including the microbial web in Lake Müggelsee. Int. Revue ges. Hydrobiol. 78: 403–410.

    Google Scholar 

  • Nixdorf, B. & H. Behrendt, 1991. Discrepancies between O2-and 14C-method resulting from measurements of primary production under consideration of vertical mixing in a shallow eutrophic lake. Verh. int. Ver. Limnol. 24: 1268–1271.

    Google Scholar 

  • Nixdorf, B., H. Behrendt & W.-G. Pagenkopf, 1992. Diurnal patterns of mixing depth and its influence on primary production in shallow lakes. Int. Revue ges. Hydrobiol. 77: 349–360.

    Google Scholar 

  • Nixdorf, B. & S. Fulda, 1989. A method for estimation of phytoplankton dark carbon losses by application of 14C method. Arch. Hydrobiol. Beih. Ergebn. Limnol. 33: 445–450.

    Google Scholar 

  • Nixdorf, B. & S. Hoeg, 1993. Phytoplankton–community structure, succession and chlorophyll content in Lake Müggelsee from 1979 to 1990. Int. Revue ges. Hydrobiol. 78: 359–377.

    Google Scholar 

  • Nixdorf, B., J. Rücker, R. Deneke & P. Zippel, 1995. Limnological analysis of standing waters in the Scharmützelsee-region, part 1. BTUC–UW 1/95, 52 pp.

  • OECD (1982). Eutrophication of waters. OECD report, Paris, 154 pp.

  • Ohle, W., 1953.Der Vorgang rasanter Seenalterung in Holstein. Die Naturwissenschaften 40: 152–162.

    Google Scholar 

  • Reynolds, C. S., 1992a. Dynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 13–31.

    Google Scholar 

  • Reynolds, C. S., 1992b. Eutrophication and the management of planktonic algae: What Vollenweider couldn’t tell us. In Sutcliffe, D. W. & J. G. Jones (eds), Eutrophication: Research and Application to Water Supply. Freshwat. Biol. Ass., Cumbria, 217 pp.

  • Reynolds, C. S. & E. G. Bellinger, 1992. Patterns of abundance and dominance of the phytoplankton of Rostherne Mere, England: Evidence from an 18-years data set. Aquat. Sci. 54: 10–36.

    Google Scholar 

  • Rojo, C. & M. A. Cobelas, 1994. Population dynamics of Limnothrix redekei, Oscillatoria lanceaeformis, Planktothrix agardhii and Pseudoanabaena limnetica(Cyanobacteria) in a shallow hypertrophic lake (Spain). Hydrobiologia 275/276: 165–171.

    Google Scholar 

  • Rücker, J., C. Wiedner & P. Zippel, 1997. Factors controlling the dominance of Planktothrix agardhiiand Limnothrix redekeiin eutrophic shallow lakes. Hydrobiologia 342/343: 107–115.

    Google Scholar 

  • Sarnelle, O., 1993. Herbivory effects on phytoplankton succession in a eutrophic lake. Ecol. Monogr. 63: 129–149.

    Google Scholar 

  • Sas, H., 1989 Lake restoration by reduction of nutrient loading–Expectations, Experiences, Extrapolations. Academia Verlag Richard, 497 pp.

  • Schäperclaus, W., 1941. Seenverschlechterung. Z. Fisch. 38: 345–375.

    Google Scholar 

  • Scharf, R., 1971. Nährstoff-und Sauerstoffverhältnisse der Seen Ostbrandenburgs. Limnologica 8: 393–414.

    Google Scholar 

  • Smith, W. D., 1977. The respiration of photosynthetic carbon in eutrophic areas in the ocean. J. mar. Res. 35: 781–794.

    Google Scholar 

  • Sommer, U., 1993. The scientific basis of eutrophication management: Reconciling basis physiology and empirical biomass models. In Guissiani, G. & C. Callieri (eds), Proceedings of the 5th Int. Conf. on the Conservation and Management of Lakes ‘Strategies for Lakes Ecosystems beyond 2000’: 6–9.

  • Thienemann, A., 1932. Schwankungen des Grundwasserzustandes in Norddeutschland während der letzten Jahrzehnte, ihre Ursachen und ihre limnologische, geologische und wirtschaftliche Bedeutung. Arch. Hydrobiol. 24: 345–428.

    Google Scholar 

  • Tilzer, M.M., 1987. Light-dependence of photosynthesis and growth in Cyanobacteria: Implications for their dominance in eutrophic lakes. N. Z. J. Mar. Freshwat. Res. 21: 401–412.

    Google Scholar 

  • Tilzer, M. M. & B. Beese, 1988. The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance. Schweiz. Z. Hydrol. 50: 1–39.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Ventz, D., 1974. Die Einflußnahme von Umgebungsfaktoren und morphometrischen Faktoren auf den Stoffhaushalt von Seen. Diss. A, Dresden, 111 pp.

  • Wundsch, H. H., 1940. Beiträge zur Fischereibiologie märkischer Seen, VI. Die Entwicklung eines besonderen Seentypus (H2S-Oscillatorien-Seen) im Flußgebiet der Spree und Havel, und seine Bedeutung für die fischereibiologischen Bedingungen in dieser Region. Z. Fisch. 38: 443–648.

    Google Scholar 

  • Zeevenboom, W., A. Bij deVaate & L. Mur, 1992. Assessment of factors limiting growth rate of Oscillatoria agardhiiin hypertrophic LakeWolderwijd, 1978, by use of physiological indicators. Limnol. Oceanogr. 27: 39–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nixdorf, B., Deneke, R. Why ’very shallow‘ lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342, 269–284 (1997). https://doi.org/10.1023/A:1017012012099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017012012099

Navigation