Skip to main content
Log in

Optimal conditions for primary production in a polymictic tropical lake (Lake Xolotlán, Nicaragua)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

From 1987 to 1993 we assessed the variation of phytoplankton biomass, underwater irradiance and primary production in Lake Xolotlán (L. Managua, Nicaragua). Chlorophyll- a averaged 65 mg m-3 and maximum and minimum concentrations were 120 and 30 mg m-3, respectively. The variability over depths and weeks was low (CV < 20%). There were strong correlations between particulate carbon and chlorophyll- a (the ratio ≈ 100: 1) and between particulate carbon and particulate nitrogen and phosphorus (the ratio ≈ 100: 11: 1). Gross primary production averaged 6.8 g C m-2 d- 1 and was stable over the years (CV ≈ 10%). Algal cell growth was approximately 4–5 g C m-2 d- 1. Productivity was limited only by the availability of underwater light and the depth of the photic zone was mainly regulated by the chlorophyll- a concentration. Therefore, areal photic zone chlorophyll- a was the only factor directly correlated to the integral photosynthetic activity but, contrary to theoretical models, the production did not increase in proportion to chlorophyll- a. Data from African lakes show a similar pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, G., 1983. Comparison of methods for estimation of phytoplankton carbon. Arch. Hydrobiol. 98: 489–508.

    CAS  Google Scholar 

  • Ahlgren, G., 1988. Comparison of algal C-14 uptake and growth rate in situ and in vitro. Verh. int. Ver. Limnol. 23: 1898–1907.

    Google Scholar 

  • Ahlgren, G. & I. Ahlgren, 1976. Methods of water-chemical analyses compiled for instruction in limnology. Institute of Limnology, Uppsala.

    Google Scholar 

  • Ahlgren, I., C. Chacón, R. García, I. Mairena, K. Rivas & A. Zelaya, 1997. Sediment microbial activity in temperate and tropical lakes, a comparison between Swedish and Nicaraguan lakes. Verh. int. Ver. Limnol. 26: 429–434.

    Google Scholar 

  • Alpine, A. E. & J. E. Cloern, 1988. Phytoplankton growth rates in light-limited environments, San Fransisco Bay. Mar. Ecol. Prog. Ser. 44: 167–173.

    Google Scholar 

  • Bannister, T. T., 1974a. Production equations in terms of chlorophyll concentration, quantum yield, and upper limit in production. Limnol. Oceanogr. 19: 1–12.

    Google Scholar 

  • Bannister, T. T., 1974b. A general theory of steady state phytoplankton growth in a nutrient saturated mixed layer. Limnol. Oceanogr. 19: 13–30.

    Google Scholar 

  • Bannister, T. T. & A. D. Wiedemann, 1984. The maximum quantum yield of phytoplankton photosynthesis in situ. J. Plankton Res. 4: 276–294.

    Google Scholar 

  • Brylinsky, M., 1980. Estimating the productivity of lakes and Reservoirs. In: E. D. LeCren & R. H. Lowe-McConell (eds), The Functioning of Freshwater Ecosystems. Blackwell, Oxford: 411–454.

    Google Scholar 

  • Brylinsky, M. & K. M. Mann, 1973. An analysis of factors governing productivity in lakes and reservoirs. Limnol. Oceanogr. 18: 1–14.

    CAS  Google Scholar 

  • Cullen, J. J. & M. R. Lewis, 1988. The kinetics of algal photoadaptation in the context of vertical mixing. J. Plank. Res. 10: 1039–1063.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    CAS  Google Scholar 

  • Erikson, R., 1998. Algal respiration and the regulation of phytoplankton biomass in a polymictic tropical lake (Lake Xolotlán, Nicaragua). Hydrobiologia 382: 17–26.

    Article  Google Scholar 

  • Erikson, R., M. Pum, K. Vammen, A. Cruz, M. Ruiz & H. Zamora, 1997. Nutrient availability and the stability of phytoplankton biomass and production in Lake Xolotlán, Nicaragua. Limnologica 27: 157–164.

    CAS  Google Scholar 

  • Erikson, R., K. Vammen, A. Zelaya & R. Bell, 1998. Distribution and dynamics of bacterioplankton production in a polymictic tropical lake (Lake Xolotlán, Nicaragua) Hydrobiologia 382: 27–39.

    Article  Google Scholar 

  • Forsberg, C., S. Ryding, A. Claesson & Å. Forsberg, 1978. Water chemical analysis. Sewage effluent and polluted lake water studies. Mitt. int. Ver. Limnol. 21: 352–363.

    CAS  Google Scholar 

  • Fuente, J. L., 1986. Red solar y la estación Vadstena, Nicaragua. Reporte Técnico-Investigativo No 04/86, UCA, Managua.

    Google Scholar 

  • Ganf, G. G., 1974. Incident solar irradiance and underwater light penetration as factors controlling the chlorophyll-a content of a shallow equatorial lake (Lake George, Uganda). J. Ecol. 62: 593–609.

    Article  CAS  Google Scholar 

  • Ganf, G. G., 1975. Photosynthetic production and irradiance-Photosynthesis relationships of the phytoplankton from a shallow equatorial lake (Lake George, Uganda). Oecologia (Berl.). 18: 165–183.

    Article  Google Scholar 

  • Ganf, G. G. & A. J. Horne, 1975. Diurnal stratification, photosynthesis and nitrogen fixation in a shallow equatorial lake (Lake George, Uganda). Freshwat. Biol. 5: 13–39.

    Article  Google Scholar 

  • Ganf, G. G. & A. B. Viner, 1973. Ecological stability in a shallow equatorial lake (Lake George, Uganda). Proc. R. Soc. B 184: 321–346.

    Article  Google Scholar 

  • Geddes, M. C., 1984. Limnology of Lake Alexandrina, River Murray, South Australia, and the effects of nutrients and light on the Phytoplankton. Aust. J. mar. Freshwat. Res. 35: 399–415.

    Article  CAS  Google Scholar 

  • Golterman, H. L., 1971. The determination of mineralization in correlation with the estimation of net primary production with the oxygen method and chemical inhibitors. Freshwat. Biol. 1: 249–256.

    Article  Google Scholar 

  • Grobbelaar, J. U., 1985. Phytoplankton productivity in turbid Waters. J. Plankton Res. 5: 653–663.

    Google Scholar 

  • Harris, G. P., 1978. Photosynthesis, production and growth: The physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. 10: 1–171.

    Google Scholar 

  • Hooker, E. M., M. Ruiz & M. Pum, 1991. Phytoplankton community composition in Lake Xolotlán (Managua). Hydrobiol. Bull.25: 121–124.

    Article  Google Scholar 

  • IRENA, 1982. Taller international de salvamento y aprovechamiento integral del Lago de Managua. Stencilled report, IRENA, Managua.

    Google Scholar 

  • Kalff, J., 1991. The utility of latitude and other environmental factors as predictors of nutrients, biomass and production in lakes worldwide: Problems and alternatives. Verh. int. Ver. Limnol. 24: 1235–1239.

    Google Scholar 

  • Karl, D. M., 1981. Simultaneous rates of RNA and DNA syntheses for estimating growth and cell division of aquatic communities. Appl. Envir. Microbiol. 42: 802–810.

    CAS  Google Scholar 

  • Kirk, J. T. O., 1986. Optical properties of phytoplankton suspensions. Can. Bull. fish. Aquat. Sci. 214: 501–520.

    Google Scholar 

  • Lacayo, M., 1991. Physical and chemical features of Lake Xolotlán (Managua). Hydrobiol. Bull. 25: 111–116.

    Article  CAS  Google Scholar 

  • Lemoalle, J., 1981. Photosynthetic production and phytoplankton in the euphotic zone of some african and temperate lakes. Rev. Hydrobiol. trop. 14: 31–37.

    Google Scholar 

  • Lemoalle, J., A. Adeniji, P. Compère, G. G. Ganf, J. Melack & J. F. Talling, 1981. Phytoplankton. In: J. J. Symmoens, M. Burgis & J. J. Gaudet (eds), The Ecology and Utilisation of African Inland Waters. UNEP, Nairobi: 37–50.

    Google Scholar 

  • Lewis, W. M., Jr., 1987. Tropical limnology. Ann. Rev. Ecol. Syst. 18: 159–184.

    Article  Google Scholar 

  • Lorenzen, C. F., 1967. Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

    CAS  Google Scholar 

  • Marra, J., 1978. Phytoplankton photosynthetic response to vertical movement on a mixed layer. Mar. Biol. 46: 203–208.

    Article  CAS  Google Scholar 

  • Melack, J. M., 1979. Temporal variability of phytoplankton in tropical lakes. Oecologia (Berl.). 44: 1–7.

    Article  Google Scholar 

  • Murphy, J. & J. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27: 31.

    Article  CAS  Google Scholar 

  • Neale, P. J. & P. J. Richerson, 1987. Photoinhibition and the diurnal variation of phytoplankton photosynthesis. I. Development of photosynthesis–irradiance model from in situ responses. J. Plankton. Res. 9: 166–193.

    Google Scholar 

  • Nusch, E. A. & G. Palme, 1975. Biologische Methoden für der Praxis der Gewässeruntersuchung, Bestimmung des Chlorophyll-a und Phaeopigment-gehaltes in Oberflachenwässer. GWF-Wasser/Abwässer 116: 562–565.

    Google Scholar 

  • Oliver, R. L., 1981. Factors controlling phytoplankton seasonal succession in Mt. Bold reservoir, South Australia. PhD. thesis, Univ. Adelaide. 173 pp.

  • Phlips, E. J., F. J. Aldridge, C. L. Schelske & T. L. Crisman, 1995. Relationship between light availability, chlorophyll a, and tripton in a large, shallow subtropical lake. Limnol. Oceanogr. 40: 416–421.

    Article  CAS  Google Scholar 

  • Platt, T. & A. D. Jassby, 1976. The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12: 421–430.

    Article  Google Scholar 

  • PLX, 1987. Evaluación del projecto Lago Xolotlán. Stencilled report. IRENA, Managua.

  • Pollingher, U. & T. Berman, 1991. Phytoplankton composition and activity in lakes of the warm belt. Verh. int. Ver. Limnol. 24: 1230–1234.

    Google Scholar 

  • Riemann, B. & R. T. Bell, 1990. Advances in estimating bacterial biomass and growth in aquatic systems. Arch. Hydrobiol. 118: 485–502.

    Google Scholar 

  • Riley, G. A., 1957. Phytoplankton in the north central Sargasso Sea. Limnol. Oceanogr. 2: 252–270.

    Google Scholar 

  • Robarts, R. D., 1979. Under water light penetration, chlorophyll a and primary production in a tropical African lake (Lake McIlwaine, Rhodesia). Arch. Hydrobiol. 86: 423–444.

    CAS  Google Scholar 

  • Robarts, R. D. & T. Zohary, 1992. The influence of temperature and light on the upper limit of Microcystis aeruginosa production in a hypertrophic reservoir. J. Plankton Res. 14; 235–247.

    Google Scholar 

  • Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–28.

    Google Scholar 

  • Schindler, D. W., 1978. Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol. Oceanogr. 23: 478–486.

    Article  Google Scholar 

  • Talling, J. F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 29–50.

    Article  Google Scholar 

  • Talling, J. F., 1965. The photosynthetic activity of phytoplankton in East African lakes. Int. Rev. ges. Hydrobiol. 50: 1–32.

    Google Scholar 

  • Talling, J. F., 1971. The underwater light climate as controlling factor in the production ecology of freshwater phytoplankton. Mitt. Int. Ver. Limnol. 19: 214–243.

    Google Scholar 

  • Talling, J. F., R. B. Wood, M. V. Prosser & R. M. Baxter, 1973. The upper limit of photosynthetic productivity by phytoplankton: Evidence from Ethiopian soda lakes. Freshwat. Biol. 3: 53–79.

    Article  Google Scholar 

  • Uhlmann, D., 1978. The upper limit of phytoplankton production as a function of nutrient load, temperature, retention time of the water, and euphotic zone depth. Int. Rev. ges. Hydrobiol. 3: 353–363.

    Google Scholar 

  • Vareschi. E., 1982. The ecology of lake Nakuru (Kenya). III. Abiotic factors and primary production. Oecologia 55: 81–101. Viner, A. B., 1977. Relationship of nitrogen and phosphorus to a tropical phytoplankton population. Hydrobiologia 52: 185–196.

    Article  Google Scholar 

  • Viner, A. B., C. Bren, H. L. Golterman & J. A. Thornton, 1981. Nutrient budgets. In: J. J. Symmoens, M. Burgis & J. J. Gaudet (eds), The Ecology and Utilisation of African Inland Waters. UNEP, Nairobi: 137–148.

    Google Scholar 

  • Vollenweider, R. A., 1965. Calculation models of photosynthesisdepth curves and some implications regarding day rate estimates in primary production measurements. Mem. Ist. Ital. Idrobiol. 18 Suppl: 425–457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erikson, R., Hooker, E., Mejia, M. et al. Optimal conditions for primary production in a polymictic tropical lake (Lake Xolotlán, Nicaragua). Hydrobiologia 382, 1–16 (1998). https://doi.org/10.1023/A:1003271614344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003271614344

Keywords

Navigation