Skip to main content
Log in

Microscopic detection of the toluene dioxygenase gene and its expression inside bacterial cells in seawater using prokaryotic in situ PCR

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The toluene dioxygenase (todC1) gene and its mRNA transcripts were amplified by in situ PCR and in situ RT-PCR, respectively, in intact cells of the bacterium Pseudomonas putida F1. In situ amplicons of DNA and mRNA were then detected by hybridizing to a fluorescently labeled oligonucleotide. In situ PCR protocols were developed to distinguish between cells of P. putida F1 (possessing the todC1 gene) and P. putida AC10R (lacking the todC1 gene); the method was sensitive enough to detect amplified products from a single copy of the todC1 gene. P. putida F1 cells were also introduced into seawater with toluene addition. Cells expressing todC1 and total cells were detectable by in situ RT-PCR and Yo-Pro 1 counterstaining, respectively. Nearly 90% of cells expressing the todC1 gene were detected in seawater amended with toluene at day 3, but no cells expressing todC1 were detected in seawater not exposed to toluene. Our results suggest that in situ PCR amplification can be a useful technique for studying presence or absence of a specific gene and gene expression of bioremediative bacteria at the individual cell level following release into natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfreider, A., J. Pernthaler, R. Amann, B. Sattler, F-O. Glockner, A. Wille & R. Psenner, 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. envir. Microbiol. 62: 2138–2144.

    Google Scholar 

  • Amann, R. I., B. J. Binder, R. J. Olson, S.W. C hisolm, R. Devereux & D. A. Stahl, 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial population. Appl. envir. Microbiol. 56: 1919–1925.

    Google Scholar 

  • Amann, R. I., W. Ludwig & K.-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169.

    Google Scholar 

  • Bertani, G., 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bact. 62: 293–300.

    Google Scholar 

  • Chen, F., W. Dustman, M. A. Moran & R. E. Hodson, 1998. In situ PCR methodologies for visualization of microscale genetic and taxonomic diversities of prokaryotic communities. Ch. 3.3.9. In Akkermans A. D. L., J. D. van Elsas & F. J. DeBruijn (eds), Molecular Microbial Ecology Manual, suppl. 3. Kluwer Academic Publishers, The Netherlands: 1–17.

    Google Scholar 

  • Chen, F., J. M. Gonzalez, W. Dustman, M. A. Moran & R. E. Hodson, 1997. In situ reverse transcription: an approach to characterize genetic diversity and activities of prokaryotes. Appl. envir. Microbiol. 63: 4907–4913.

  • DeLong, E. F., G. S. Wickham & N. R. Pace, 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1362.

    Google Scholar 

  • Foght, J.M. & D.W. S. Westlake, 1991. Cross hybridization of plasmid and genomic DNA from aromatic and polycyclic aromatic hydrocarbon degrading bacteria. Can. J.Microbiol. 37: 924–932.

    Google Scholar 

  • Gibson, D. T., M. Hensley, H. Yoshioka & T. J. Mabry, 1970. Formation of (+)-cis-2,3,-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochem. 9: 1626–1630.

    Google Scholar 

  • Gibson, D. T., J. R. Koch & R. E. Kallio, 1968. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochem. 7: 2653–2662.

    Google Scholar 

  • Giovannoni, S. J., E. F. D eLong, G. J. Olsen & N. R. Pace, 1988. Phylogenetic group specific oligonucleotide probes for identification of single microbial cells. J. Bact. 170: 720–726.

    Google Scholar 

  • Hirons, G. T., J. J. Fawcett & H. A. Crissman, 1994. TOTO and YOYO: New very bright fluorochromes for DNA content analyses by flow cytometry. Cytometry 15: 129–140.

    Google Scholar 

  • Hodson R. E., W. A. Dustman, R. P. Garg & M. A. Moran, 1995. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl. envir. Microbiol. 61: 4074–4082.

    Google Scholar 

  • Jin, L., X. Qian & R. V. Lloyd, 1995. Comparison of mRNA expression detected by in situ PCR and in situ hybridization in Endorcrine cells. Cell Vision 4: 314–321.

    Google Scholar 

  • Lee, S. & P. F. Kemp, 1994. Single-cell RNA content of natural marine planktonic bacteria measured by hybridization with multiple 16S rRNA-targeted fluorescent probes. Limnol. Oceanogr. 39: 869–879.

    Google Scholar 

  • Long, A. A. & P. Komminoth, 1995. In situ PCR: General methodology and recent advances. In Gu J. (ed.), In situ Polymerase Chain Reaction and Related Technology. Eaton Publishing Co., Natick, Massachusetts: 23–34.

    Google Scholar 

  • Pemberton, J. M., 1983. Degradative plasmids. Internatl. Rev. Cytol. 84: 155–183.

    Google Scholar 

  • Porter, J., R. Pickup & C. Edwards, 1995. Flow cytometric detection of specific genes in genetically modified bacteria using in situ polymerase chain reaction. FEM Microbiology 134: 51–56.

    Google Scholar 

  • Porter, K. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Sayler, G. S., M. S. Shields, E. T. Tedford, A. Breen, S. W. Hooper, K. M. Sirotkin & J. W. Davis, 1985. Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Appl. envir. Microbiol. 49: 1295–1303.

    Google Scholar 

  • Schell, M. A., 1985. Transcriptional control of the nah and sal hydrocarbon degradation operons by the nahR product. Gene 36: 301–309.

    Google Scholar 

  • Sobecky, P. A., M. A. Schell, M. A. Moran & R. E. Hodson, 1992. Adaptation of model genetically engineered microorganisms to lake water: growth rate enhancements and plasmid loss. Appl. envir. Microbiol. 58: 3630–3637.

    Google Scholar 

  • Tolker-Nielson, T., K. Holmstrøm & S. Molin, 1997. Visualization of specific gene expression in individual Salmonella typhimurium Cells by in situ PCR. Appl. envir. Microbiol. 63: 4196–4203.

    Google Scholar 

  • Trebesius, K., R. Amann, W. Lugwig, K. Mühlegger & K-H. Schleifer, 1994. Identification of whole fixed bacterial cells with nonradioactive 23S rRNA-targeted polynucleotide probes. Appl. envir. Microbiol. 60: 3228–3235.

    Google Scholar 

  • Yamaguchi, N., S. Inaoka, K. Tani, T. Kenzaka & M. Nasu, 1996. Detection of specific bacterial cells with 2-hydroxy-3-naphthoic acid-20-phenylanilide phosphate and Fast Red TR in situ hybridization. Appl. envir. Microbiol. 62: 275–278.

    Google Scholar 

  • Zehbe, I., J. F. Sällström, G. W. Hacker, C. Hauser-Kronberger, E. Rylander & E. Wilander, 1994. Indirect and direct in situ PCR for the detection of human papillomavirus. An evaluation of two methods and a double staining technique. Cell Vision 163: 163–167.

    Google Scholar 

  • Zylstra, G. J. & D. T. Gibson, 1989. Toluene degradation by Pseudomonas putida F1. J. Biol. Chem. 264: 14940–14946.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Dustman, W.A. & Hodson, R.E. Microscopic detection of the toluene dioxygenase gene and its expression inside bacterial cells in seawater using prokaryotic in situ PCR. Hydrobiologia 401, 131–138 (1999). https://doi.org/10.1023/A:1003778108698

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003778108698

Navigation