Skip to main content
Log in

Incorporation of the transition metal Hf into GaN

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The perturbed angular correlation (PAC) technique was applied to study the incorporation of the transition metal Hf into GaN after implantation. To this end the PAC probe 181Hf(181Ta) was implanted into epitaxial Wurtzite GaN layers (1.3 μm on sapphire) with an energy of 160 keV and doses of 7× 1012 at/cm2. PAC spectra were recorded during an isochronal annealing programme, using rapid thermal annealing (RTA) and furnace annealing, in the 300–1000ºC temperature range. After implantation the spectra show a damped oscillation corresponding to a quadrupole interaction frequency (QIF) of νQ= 340 MHz for 30% of the probe nuclei. Annealing up to 600ºC reduces the damping of this frequency without an increase of the probe atom fraction fs in these sites. Above 600ºC fs grows rapidly until after the 900ºC RTA step more than 80% of the Hf probes experience a well defined QIF due to the incorporation of Hf on undisturbed sites of the hexagonal GaN wurtzite lattice. An interaction frequency of νQ= 340 MHz is derived. RTA and furnace annealing yield similar results for annealing up to 800ºC, where the undisturbed fraction reaches about 60%. Then RTA at higher temperatures increases this fraction, while furnace annealing leads to a decrease down to 22% after annealing at 1000ºC. To our knowledge this is the first time that a transition metal probe like Hf is incorporated to such a large extent into a semiconductor lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A. Ponce and D.P. Bour, Nature 386 (1998) 351.

    Article  Google Scholar 

  2. H. Fraunfelder and R.M. Steffen, in: α-, β-andγ-Ray Spectroscopy, ed. K. Siegbahn (North-Holland, Amsterdam, 1965) p. 997.

    Google Scholar 

  3. CREE Research, Durham, NC, USA.

  4. R. Vianden, in: Insulating Materials for Optoelectronics - New Developments, ed. F. Agullo-López (World Scientific, Singapore, 1995) p. 125.

    Google Scholar 

  5. E. Alves, M.F. da Silva, J.G. Marques, J.C. Soares and K. Freitag, Math. Sci. Engrg. B (in press).

  6. S. Strite, A. Pelzmann, T. Suski, M. Leszinynski, J. Jun, A. Rockett, M. Kamp and K.J. Ebeling, MRS Internet J. Nitride Semicond. Res. 2 (1997) 15.

    Google Scholar 

  7. T. Butz and A. Lerf, Phys. Lett. A 97 (1983) 217.

    Article  ADS  Google Scholar 

  8. F.D. Feiock and W.R. Johnson, Phys. Rev. 187 (1969) 39.

    Article  ADS  Google Scholar 

  9. G. Denninger and D. Reiser, Phys. Rev. 55 (1997) 5073.

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Ronning, M. Dalmer, M. Deicher, M. Restle, M.D. Bremser, R.F. Davies and H. Hofsäss, Mat.Res. Soc. Symp. Proc. 468 (1997) 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartels, J., Freitag, K., Marques, J. et al. Incorporation of the transition metal Hf into GaN. Hyperfine Interactions 120, 397–402 (1999). https://doi.org/10.1023/A:1017080902893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017080902893

Keywords

Navigation