Skip to main content
Log in

Beta–neutrino correlation experiments on laser trapped 38mK, 37K

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Laser trapping and cooling techniques are now being applied to the study of nuclear β-decay at several labs. A magneto-optical trap (MOT) provides a localized source of atoms suspended in space, so the low-energy recoiling nuclei can freely escape and be detected in coincidence with the β. This allows reconstruction of the neutrino momentum, and the deduction of the β-v correlation in a more direct fashion than previously possible. In addition, the nuclei can be polarized by atomic techniques, opening a new class of spin correlation measurements to test the degree to which parity is maximally violated in the weak interaction. Our present experiment has detected several hundred thousand recoil-β+ coincidences from the 0+ → 0+ pure Fermi decay of 38mK, produced at the on-line isotope separators TISOL and ISAC at TRIUMF. Our goal is to set constraints on non-Standard Model scalar bosons competitive with high-energy colliders and more conventional β-v correlation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Behr et al., Phys. Rev. Lett. 79 (1997) 375.

    Article  ADS  Google Scholar 

  2. E.L. Raab et al., Phys. Rev. Lett. 59 (1987) 2631.

    Article  ADS  Google Scholar 

  3. S. Aid et al. (H1 collaboration), Phys. Lett. B 369 (1996) 173.

    Article  ADS  Google Scholar 

  4. B. Abbott et al., Phys. Rev. Lett. 80 (1998) 2051.

    Article  ADS  Google Scholar 

  5. F. Abe et al., Phys. Rev. Lett. 74 (1995) 2900; S. Abachi et al., Phys. Rev. Lett. 76 (1996) 3271.

    Article  ADS  Google Scholar 

  6. J.D. Jackson, S.B. Treiman and H.W. Wyld, Phys. Rev. 106 (1957) 517; Nuclear Phys. 4 (1957) 206.

    Article  ADS  Google Scholar 

  7. E. Hagberg et al., Phys. Rev. Lett. 73 (1994) 396.

    Article  ADS  Google Scholar 

  8. B. Holstein, Rev. Mod. Phys. 46 (1974) 789.

    Article  ADS  Google Scholar 

  9. F. Glück, Nuclear Phys. A 628 (1998) 493.

    Article  ADS  Google Scholar 

  10. G.K. Bavaria et al., Z. Phys. A 302 (1981) 329.

    Article  Google Scholar 

  11. E.G. Adelberger et al., Phys. Rev. Lett. 83 (1999) 1299.

    Article  ADS  Google Scholar 

  12. R. Guckert et al., Phys. Rev. A 58 (1998) R1637.

    Article  ADS  Google Scholar 

  13. Z.-T. Lu et al., Phys. Rev. Lett. 79 (1997) 994; 77 (1996) 3331.

    Article  ADS  Google Scholar 

  14. D.R. Swenson and L.W. Anderson, Nucl. Instrum. Methods B 29 (1988) 627.

    Article  ADS  Google Scholar 

  15. T. Swanson et al., J. Opt. Soc. Amer. B (November 1998).

  16. O. Kofoed-Hansen, Dan. Mat. Fys. Medd. 28(9) (1954) 1.

    Google Scholar 

  17. A. Snell, in: Alpha-, Beta-, and Gamma-Ray Spectroscopy, ed. K. Siegbahn (1964).

  18. T.A. Carlson, C.W. Nestor, T.C. Tucker and F.B. Malik, Phys. Rev. 169 (1968) 27.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorelov, A., Behr, J., Melconian, D. et al. Beta–neutrino correlation experiments on laser trapped 38mK, 37K. Hyperfine Interactions 127, 373–380 (2000). https://doi.org/10.1023/A:1012649229978

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012649229978

Navigation