Skip to main content
Log in

Inorganic biochemistry with short-lived radioisotopes as nuclear probes

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Metal ions are ubiquitous in the biosphere. In living organisms metalloproteins with specifically designed metal cores perform vital chemical processes. On the other hand, several heavy metals are detrimental to living organisms and nature has developed effective enzymatic detoxification systems which convert toxic metal ions to less toxic species. The nuclear spectroscopy technique Time Differential Perturbed Angular Correlation (TDPAC) of γ-rays uses radioactive isotopes as nuclear probes in these metal cores to obtain a better understanding of the structural and functional significance of these metal cores by monitoring the nuclear quadrupole interaction of the TDPAC probe. Since this technique is based on the nuclear decay, it is also applicable under physiological conditions, i.e., especially at picomolar concentrations. For these studies an indispensable prerequisite is the production of the TDPAC probes with highest possible specific activity and purity as is done by the on-line mass separator ISOLDE at CERN in Geneva.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Miyazaki, M. Hasegawa, K. Funahashi and M. Uemeda, Nature 362 (1993) 839.

    Article  ADS  Google Scholar 

  2. P. Umpathy, Coord. Chem. Rev. 95 (1989) 129.

    Article  Google Scholar 

  3. S.J. Berners-Price and P.J. Sadler, in: Frontiers in Bioinorganic Chemistry, ed. A.V. Xavier (VCH, Weinheim, 1986) p. 376.

    Google Scholar 

  4. R.-D. Wilken and H. Hintelmann, Water Air Soil Poll. 56 (1991) 427.

    Article  Google Scholar 

  5. R.C. Denney and R. Sinclair, Visible and Ultraviolet Spectroscopy (Wiley, Chichester, 1987).

    Google Scholar 

  6. H. Sigel, ed., Applications of NMR to Paramagnetic Species. Metal Ions in Biological Systems, Vol. 21 (Marcel Dekker, New York, 1986).

    Google Scholar 

  7. B.M. Hoffmann, Acc. Chem. Res. 24 (1991) 164.

    Article  Google Scholar 

  8. E.I. Solomon and M.D. Lowery, Science 259 (1993) 1575.

    ADS  Google Scholar 

  9. C.D. Garner, Adv. Inorg. Chem. 36 (1991) 303.

    Article  Google Scholar 

  10. P. Gütlich, R. Link and A. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry (Springer, Berlin, 1978).

    Google Scholar 

  11. C. Keppler. K. Achterhold, A. Ostermann, U. van Bürck, W. Potzel, A.I. Chumakov, A.Q.R. Baron, R. Rüffer and F. Parak, EBJ 25 (1997) 221.

    Google Scholar 

  12. P. Mottner, T. Butz, A. Lerf, J. Erfkamp, K. Schneider and A. Müller, Biochim. Biophys. Acta 1164 (1993) 311.

    Google Scholar 

  13. A. Müller, W. Suer, C. Pohlmann, K. Schneider, W.G. Thies and H. Appel, European J. Biochem. 246 (1997) 311.

    Article  Google Scholar 

  14. C. Pohlmann, A. Appel, W.-G. Thies, A. Müller, K. Schneider and W. Suer, Hyp. Interact. 59 (1993) 1575.

    Google Scholar 

  15. W. Tröger, T. Butz, E. Danielsen, R. Bauer, A. Messerschmidt, U. Thoenes, R. Huber, G.W. Canters and T. den Blaauwen, Hyp. Interact. 80 (1993) 1133.

    Article  ADS  Google Scholar 

  16. E. Danielsen, R. Bauer, L. Hemmingsen, M.-L. Andersen, M.J. Bjerrum, T. Butz, W. Tröger, G.W. Canters, C.W.G. Hoitink, G. Karlsson, Ö. Hansson and A. Messerschmidt, J. Biolog. Chem. 270 (1995) 573.

    Article  Google Scholar 

  17. E. Danielsen, R. Bauer, L. Hemmingsen, M.J. Bjerrum, T. Butz, W. Tröger, G.W. Canters, T. den Blaauwen and G. Pouderoyen, European J. Biochem. 233 (1995) 554.

    Article  Google Scholar 

  18. W. Tröger, C. Lippert, T. Butz, K. Sigfridsson, Ö. Hansson, E. McLaughlin, R. Bauer, E. Danielsen, L. Hemmingsen, M.J. Bjerrum and the ISOLDE Collaboration, Z. Naturf. 51a (1996) 431.

    Google Scholar 

  19. T. Butz and W. Tröger, in: Bioinorganic Chemistry: Transition Metals in Biology and their Coordination Chemistry, ed. A.X. Trautwein (Wiley/VCH, New York, 1997) p. 302.

    Google Scholar 

  20. T. Butz and W. Tröger, in: Multi-Copper Oxidases, ed. A. Messerschmidt (World Scientific, Singapore, 1997) p. 431.

    Google Scholar 

  21. R. Bauer, Quart. Rev. Biophys. 18 (1985) 1.

    Article  ADS  Google Scholar 

  22. L.G. Shpinkova, V.N. Kulakov, A.A. Sorokin, G.K. Ryasny, B.A. Komissarova and S.M. Nikitin, Z. Naturf. 53a (1998) 630.

    Google Scholar 

  23. W. Tröger, Hyp. Interact. 120/121 (1999) 117.

    Article  ADS  Google Scholar 

  24. F.J. Schwab, H. Appel, M. Neu and W.-G. Thies, Hyp. Interact. 80 (1993) 1155.

    Article  ADS  Google Scholar 

  25. H. Frauenfelder and R.M. Steffen, in: Alpha-, Beta-and Gamma-Ray Spectroscopy, Vol. 2, ed. K. Siegbahn (North-Holland, Amsterdam, 1965).

    Google Scholar 

  26. T. Butz, S. Saibene, Th. Fraenzke and M. Weber, Nucl. Instrum. Methods A 284 (1989) 417.

    Article  ADS  Google Scholar 

  27. T. Butz, Z. Naturf. 51a (1996) 396.

    Google Scholar 

  28. T. Butz, M. Ceolín, P. Ganal, P. Schmidt, M.A. Taylor and W. Tröger, Phys. Scripta 54 (1996) 234.

    Article  ADS  Google Scholar 

  29. G. Czjzek, Hyp. Interact. 14 (1983) 189.

    Article  ADS  Google Scholar 

  30. I. Savini, L. Morpurgo and L. Avigliano, Biochem. Biophys. Res. Commun. 131 (1985) 1251.

    Article  Google Scholar 

  31. K. Ando, J. Biochem. (Tokyo) 68 (1970) 501. [32] E.T. Adman, in: Metalloproteins, Part 1, ed. P. Harrison (Verlag Chemie, 1985).

    Google Scholar 

  32. B.L. Vallee and R.J.B. Williams, Proc. Nat. Acad. Sci. 59 (1968) 498.

    Article  ADS  Google Scholar 

  33. A. Messerschmidt, R. Ladenstein, R. Huber, M. Bolognesi, L. Avigliano, R. Petruzelli, A. Rossi and A. Finazzi-Agró, J. Mol. Biol. 224 (1992) 179.

    Article  Google Scholar 

  34. M.T. Graziani, L. Morpurgo, G. Rotilio and B. Mondoví, FEBS Lett. 70 (1976) 87. W. Tröger, T. Butz/Nuclear spectroscopy in inorganic biochemistry 527

    Article  Google Scholar 

  35. L. Avigliano, A. Desideri, S. Urbanelli, B. Mondovíand A. Marchesini, FEBS Lett. 100 (1979) 318.

    Article  Google Scholar 

  36. M.M. Morie-Bebel, M.C. Morris, J.L. Menzie and D.R. McMillin, J. Amer. Chem. Soc. 106 (1984) 3677.

    Article  Google Scholar 

  37. A. Schmidt-Klemens, D.R. McMillin, H.-T. Tsang and J.E. Penner-Hahn, J. Amer. Chem. Soc. 111 (1989) 6398.

    Article  Google Scholar 

  38. C. Lippert, Ph.D. Thesis, Leipzig (1996).

  39. W. Tröger, Ph.D. Thesis, Physik-Department, Technische Universität München (1994).

  40. T. Butz, W. Tröger, A. Messerschmidt, U. Thoenes and R. Huber, Hyp. Interact. 80 (1993) 1127.

    Article  ADS  Google Scholar 

  41. S. Silver and T.K. Misra, Ann. Rev. Microbiol. 42 (1988) 717.

    Article  Google Scholar 

  42. T. Butz, W. Tröger, Th. Pöhlmann and O. Nuyken, Z. Naturf. 47a (1992) 85.

    Google Scholar 

  43. C. Christou, K. Foltin and J.C. Huffman, Polyhedron 3 (1995) 1247.

    Article  Google Scholar 

  44. W.N. Setzer, Y. Tang, G.J. Grant and D.G. van Derveer, Inorg. Chem. 30 (1991) 3652.

    Article  Google Scholar 

  45. K.M. Comess, L.M. Shewchuck, K. Ivanetich and C.T. Walsh, Biochemistry 33 (1994) 4175.

    Article  Google Scholar 

  46. L. Utschig, J.W. Bryson and T.V. O'Halloran, Science 268 (1995) 380.

    ADS  Google Scholar 

  47. F.H. Frimmel and R.F. Christman, eds., in: Humic Substances and Their Role in the Environment (Wiley, Chichester, 1988).

    Google Scholar 

  48. J.I. Kim, H. Wimmer, R. Klenze, Radiochim. Acta 54 (1991) 35.

    Google Scholar 

  49. C. Moulin, P. Decombox, P. Mouchien, V. Moulin and M. Theyssier, Radiochim. Acta 52/53 (1991) 119.

    Google Scholar 

  50. H. Kupsch, K. Franke, D. Degering, W. Tröger and T. Butz, Radiochim. Acta 7i3 (1996) 145.

    Google Scholar 

  51. W. Tröger, unpublished results.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tröger, W., Butz, T. Inorganic biochemistry with short-lived radioisotopes as nuclear probes. Hyperfine Interactions 129, 511–527 (2000). https://doi.org/10.1023/A:1012646808055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012646808055

Navigation