Skip to main content
Log in

Very low temperatures and their applications in nuclear orientation

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

In NO-experiments at very low temperatures problems arise from the finite life-time of the nuclei and the radioactive self-heating of the source. Recent developments of top loading hyperfine enhanced nuclear demagnetization cryostats of small cooling power give fast access to temperatures around 1 mK. To reach lower temperatures the bottleneck of thermal contact must be overcome in order to cool samples which are themselves the main source of heat. In this context the limitations of nuclear demagnetization cryostats are discussed with respect to their application in “brute force”- and NQR/NMR-experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oxford Instruments LTD, Osney Mead, Oxford OX2 ODX, England

  2. S.H.E. corporation, 4174 Sorrento Valley Blvd.,San Diego,U.S.A.

  3. An introductional description of this cooling technique as well as the technique of dilution refrigeration can be found in: O.V. Lounasmaa, Experimental principles and methods below 1K. Academic Press Inc. (London) 1974 and

    Google Scholar 

  4. O.V. Lounasmaa. J. Phys. E 12 (1979) 668 and

    Google Scholar 

  5. D.S. Betts, Refrigeration and thermometry below 1K. Sussex University Press (1976)

    Google Scholar 

  6. G. Frossati, thesis, Université de Grenoble (1978)

  7. G. Frossati, H. Godfrin, B. Hebral, G. Schumacher and D. Thoulouze, Proc. ULT Hakone Symp., eds. T. Sugawara, S.Nakajima, T. Ohtsuka and T. Usui (Phys. Soc. of Japan,Tokyo, (1978))

    Google Scholar 

  8. G. Frossati, J. de Physique C6 (1978) 1578

    Google Scholar 

  9. G. Frossati, private communication; the new dilution unit at Leiden is running at 1.9 mK

  10. Chr. Probst, unpublished; the unit is comparable to Oxford-400 but reaching 3.5 mK; the same 4-Ag-exchanger-set is used

  11. K. Uhlig, thesis, TU-Munich (1982); uses Cu-step exchangers

  12. K. Neumaier, unpublished; small unit with one Cu-step exchanger

  13. K. Neumaier, A. Heidemann and A. Magerl, ILL-Grenoble, internal report (1983); “dip-stick” unit; the unit can be inserted as a whole into the dewar

  14. P. Herzog, private communication and this volume

  15. K. Andres and S. Darak, Physica 86–88B (1977) 1071

    Google Scholar 

  16. K. Andres, E. Hagn, E. Smolic and G. Eska, J. Appl. Phys.46 (1975) 2752

    Google Scholar 

  17. G. Eska, K.Neumaier, W. Schoepe, K. Uhlig and W. Wiedemann, Phys. Rev. B27 (1983) 5534

    Google Scholar 

  18. E. Schuberth and G. Eska, unpublished

  19. D.I. Bradley, A.L. Allsop and N.J. Stone, Proc. LT17 (Karlsruhe), eds. Eckern,Schmid, Weber and Wühl, North Holland, (1984) 1159

    Google Scholar 

  20. G. Eska, thesis, TU-Munich (1971)

  21. D.I. Bradley, A.M. Guenault, V. Keith, C.J.Kennedy, I.E.Miller, S.G. Mussett, G.R. Pickett and W.P. Pratt,Jr., J. Low Temp. Phys.57 (1984) 359

    Google Scholar 

  22. R.M. Mueller, Chr. Buchal, H.R. Folle, M. Kubota and F. Pobell, Cryogenics20 (1980) 395

    Google Scholar 

  23. H. Ishimoto, N. Nishida, T. Furubayashi, M.Shinohara, Y.Takano, Y.I. Miura and K. Ono, J. Low Temp. Phys.55 (1984) 17

    Google Scholar 

  24. G. Eska and E. Schuberth, to be published

  25. P. Walker, this volume

  26. J. Hook, private communication

  27. F. Pobell, private communication

  28. DM 35 000.- is3the estimate for the whole system, including Dewar, pumps, He handling and dilution unit

  29. E. Schuberth, Rev. Sci. Instrum.55 (1984) 1486

    Google Scholar 

  30. Cryogenic Consultants LTD, Metrostore Bldg., 231 the Vale, London W3 7QS, England

  31. G. Eska and K. Neumaier, Cryogenics23 (1983) 84

    Google Scholar 

  32. M. Kubota, H.R. Folle, Ch. Buchal, R.M. Mueller and F. Pobell, Phys. Rev Lett.45 (1980) 1812

    Google Scholar 

  33. M. Reiffers, K. Flachbart, S. Janos, A.B. Beznosov and G. Eska, Phys. Status Solidi B109 (1982) 369

    Google Scholar 

  34. R.M. Mueller, this volume

  35. U. Angerer and G. Eska, Cryogenics24 (1984) 515

    Google Scholar 

  36. D.D. Osheroff, private communication

  37. Y.S. Karimov and I.F. Shchegolev, JETP14, (1962) 772

    Google Scholar 

  38. A. Benoit, J. Flouquet, D. Rufin and J. Schweizer, J. de Phys. Lett.43 (1982) L431

    Google Scholar 

  39. P.R. Roach, B.K. Sarma, M.L. Vrtis, S.K. Sinah, K. Skold, J.B. Ketterson and W. Halperin, Argonne Nat. Lab. IPNS6, 1 (1983)

    Google Scholar 

  40. Y.H. Tang, E.D. Adams, K. Uhlig and D.N. Bitter, Proc. LT17 (Karlsruhe),eds. Eckern,Schmid, Weber and Wühl, North Holland, (1984) 1161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eska, G. Very low temperatures and their applications in nuclear orientation. Hyperfine Interact 22, 221–234 (1985). https://doi.org/10.1007/BF02063996

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02063996

Keywords

Navigation