Skip to main content
Log in

Mössbauer studies of spin reorientations in oxides

  • Application to Magnetism
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy has been remarkably useful in understanding several properties of the mixed oxides. The investigations relating to spin arrangements form an important part of the successful applications of this method. In mixed spinel ferrites and garnets, Mössbauer spectroscopy unambiguously showed the non-collinearity of spins in the same sublattice in several cases. The detailed investigations showed features predicted by the localized canting model (LCM), viz., the simultaneous presence of non-collinearity at the two non-equivalent sites in certain cases, ’spin reversal’ of ions without magnetic ions on the nearest non-equivalent sites. However, it has not been possible to observe other details of the model. Another striking result obtained is that non-collinearity decreases rapidly as the temperature increases, disappears at temperatures below 80 K. These studies have not, however, succeeded in determining the exchange constants unambiguously. In orthoferrites, the complications due to the variations in the environments of ions in the same sublattice are not present. Consequently, studies of spin reorientations (SR) relative to the crystal axes and other magnetic properties have provided accurate results, ideal for theoretical analyses. SR is due to the anisotropic-symmetric and antisymmetric exchange interactions between the rare earths and iron group ions, which are much smaller than the isotropic part of the exchange interaction. Thus, a detailed theoretical analysis expresses SR parameters in terms of these smaller interactions and the external magnetic field, if present. The number of parameters involved is, however, large. Analyses of the experimental data are made using a simpler two-sublattice model involving a smaller number of parameters. This, nevertheless, makes comparison between similar orthoferrites possible. There are other oxides as well which show SRs due to changes in the signs and magnitudes of the crystal field anisotropic constants. Such studies are useful for investigating crystal field interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yafet and C. Kittel, Phys. Rev. 87(1952)290.

    Article  ADS  Google Scholar 

  2. M.A. Gilleo, J. Phys. Chem. Solids 13(1960)33.

    Google Scholar 

  3. T.A. Kaplan, Phys. Rev. 119(1960)1460.

    Article  ADS  MathSciNet  Google Scholar 

  4. D.H. Lyons and T.A. Kaplan, Phys. Rev. 120(1960)1580.

    Article  ADS  MathSciNet  Google Scholar 

  5. D.H. Lyons, T.A. Kaplan, K. Dwight and N. Menyuk, Phys. Rev. 126(1962)540.

    Article  ADS  Google Scholar 

  6. S. Geller, J. Appl. Phys. 37(1966)1408; ibid Phys. Rev. 181(1969)980.

    Google Scholar 

  7. I. Nowik, J. Appl. Phys. 40(1969)5184.

    Google Scholar 

  8. E. Prince, Acta Cryst. 10(1957)554.

    Article  Google Scholar 

  9. N.S. SatyaMurthy, M.G. Natera, S.I. Youseff, R.J. Begum and C.M. Shrivastava, Phys. Rev. 181(1969)969.

    ADS  Google Scholar 

  10. J. Chappert and R.B. Frankel, Phys. Rev. Lett. 19(1967)570.

    Article  ADS  Google Scholar 

  11. A. Rosencwaig, Can. J. Phys. 48(1970)2857.

    ADS  Google Scholar 

  12. T. Yamaguchi, J. Phys. Chem. Solids 35(1974)479.

    Google Scholar 

  13. P.A. Dickoff, P.J. Schurer and A.H. Morrish, Phys. Rev. B22(1980)115.

    ADS  Google Scholar 

  14. L. Néel, Ann. Phys. 3(1948)137.

    Google Scholar 

  15. F.K. Lotgering, Phillips Res. Repts. 11(1956)190.

    Google Scholar 

  16. S.C. Bhargava and N. Zeman, Phys. Rev. B21(1980)1726.

    ADS  Google Scholar 

  17. A. Rosencwaig, Can. J. Phys. 48(1970)2868.

    ADS  Google Scholar 

  18. M.D. Sunderajan, A. Narayanaswamy, T. Nagarajan, L. Häggström, G.S. Swamy and K.V. Ramanujachary, to appear in J. Phys. C.

  19. A.H. Morrish and K. Hameda, J. de Phys. 41(1980)C1–171.

    Google Scholar 

  20. G.A. Petitt and D.W. Forester, Phys. Rev. B4(1971)3912.

    Article  ADS  Google Scholar 

  21. L.K. Leung, B.J. Evans and A.H. Morrish, Phys. Rev. B8(1973)29.

    ADS  Google Scholar 

  22. P.E. Clark and A.H. Morrish, Phys. Stat. Sol. (a) 19(1973)687.

    Google Scholar 

  23. A.H. Morrish and P.E. Clark, Phys. Rev. B11(1975)278.

    Article  ADS  Google Scholar 

  24. J.H. Hastings and L.M. Corliss, Phys. Rev. 104(1961)328.

    ADS  Google Scholar 

  25. U. Konig and G. Chol, J. Appl. Cryst. 1(1968)124.

    Google Scholar 

  26. A.H. Morrish and P.J. Schurer, Physica 86-88B(1977)921.

    Google Scholar 

  27. S. Ligenza, M. Szynkarczuk and A. Miracka, J. Magn. Magn. Mater. 15–18(1980)1433.

    Google Scholar 

  28. J. Piekoszewskii, A. Konwicki, J. Suwalski, K. Kisynska, A. Miracka and S. Makolagwa, Proc. Int. Conf. on Mössbauer Effect, Bucharest, Romania (1977), p. 163.

  29. W. Low and E.L. Offenbacher, Solid State Physics, ed. F. Seitz and D. Turnball, Vol. 17 (1965) p. 186.

  30. J.B. Goodenough,Magnetism, ed. G.T. Rado and H. Suhl, Vol. 3 (1963) p. 12.

  31. S. Geller, J. Appl. Phys. 37(1966)1408.

    Google Scholar 

  32. J. Piekoszewskii, L. Dabrowski, J. Suwalski and S. Makolagwa, Proc. Int. Conf. on Mössbauer Effect, Cracow, Poland (1975) p. 157.

  33. J. Piekoszewskii, L. Dabrowski, J. Suwalski and S. Makolagwa, Phys. Stat. Sol. (a) 39 (1977)643.

    Google Scholar 

  34. T. Yamaguchi, S. Sugano, K. Tsushima and S. Washimiya, Proc. Int. Conf. on Magnetism, Moscow, USSR (1973) unpublished.

  35. M. Eibschutz, S. Shtrikman and D. Treves, Phys. Rev. 156(1967)562.

    ADS  Google Scholar 

  36. M. Eibschutz, G. Gorodetsky, S. Shtrikman and D. Treves, J. App., Phys. 35(1964) 1071.

    Google Scholar 

  37. D. Treves, J. Appl. Phys. 36(1965)1033.

    Article  Google Scholar 

  38. R.L. White, J. Appl. Phys. 40(1969)1061.

    Article  Google Scholar 

  39. E.F. Bertaut,Magnetism, ed. G.T. Rado and H. Suhl, Vol. 3 (1963) p. 160.

  40. I.S. Jacobs, H.F. Burne and L.M. Levinson, J. Appl. Phys. 42(1971)1631.

    Article  Google Scholar 

  41. G.W. Durbin, C.E. Johnson, M.F. Thomas and B.M. Wanklyn, J. Phys. C8(1975)3051.

    Article  ADS  Google Scholar 

  42. L.A. Prelorendjo, C.E. Johnson, M.F. Thomas and B.M. Wanklyn, J. Phys. C13(1980) 2567.

    Article  ADS  Google Scholar 

  43. G. Gorodetsky and L.M. Levinson, Phys. Lett 31A(1970)115.

    Google Scholar 

  44. M. Belaknovsky, J. Chappert, T. Rouskov and J. Sivardiere, J. de Phys. 32(1971) C1–492.

    Google Scholar 

  45. G. Gorodetsky, L.M. Levinson, S. Shtrikman and D. Treves, Phys. Rev. 187(1969)637

    Article  ADS  Google Scholar 

  46. C.E. Johnson, L.A. Prelorendjo and M.F. Thomas, J. Magn. Magn. Mater. 15–18(1980) 557.

    Google Scholar 

  47. G.W. Durbin, C.E. Johnson and M.F. Thomas, J. Phys. C10(1977)1975.

    Article  ADS  Google Scholar 

  48. J.D. Cashion, A.H. Cooke, D.M. Martin and M.R. Wells, J. Phys. C3(1975)3051.

    Google Scholar 

  49. D. Hanzel, J. de Phys. 41(1980)C1–159.

    Google Scholar 

  50. M. Shimada, M. Koizumi, T. Takano, T. Shinjo and T. Takada, J. Phys. Collo C2 (1979) 272.

    Google Scholar 

  51. S. Geller and G. Balestrino, Phys. Rev. B21(1980)4055.

    ADS  Google Scholar 

  52. Z.M. Stadnik, Proc. Int. Conf. on Mössbauer Effect, Jaipur, India (1982), p. 234.

  53. G. Balestrino, S. Geller, W. Tolksdorf and P. Willich, Phys. Rev. B22(1980)2282.

    Article  ADS  Google Scholar 

  54. F. van der Woude, Phys. Stat. Sol. 17(1966)417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhargava, S.C. Mössbauer studies of spin reorientations in oxides. Hyperfine Interact 25, 435–460 (1985). https://doi.org/10.1007/BF02354660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02354660

Keywords

Navigation