Skip to main content
Log in

Temperature dependence of the Mössbauer isomer shift

  • Techniques and their Applications
  • Mössbauer Spectroscopy
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The isomer shift for nuclei in solids is calculated taking into account the core electron charge density, the overlap effects, the charge transfer effects, and the crystal field effects. The importance of the dynamical electron phonon interaction is pointed out. It is found that the phonon-induced dynamical configurational mixing and the dynamical charge transfer play an important role and contribute to a dynamical isomer shift which enhances the temperature-dependent second-order Doppler shift. It is found that the internal conversion and the electron capture give information which is related to the isomer shift. In mixedvalence compounds such as EuCu2Si2, the center shift of the Mössbauer lines has been explained as if arising from the phonon-induced dynamical isomer shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.D. Josephson, Phys. Rev. Lett. 4(1960)341.

    Article  ADS  Google Scholar 

  2. A.A. Maradudin, Solid State Physics, ed. F. Seitz and D. Turnbull (Academic Press, New York) 18(1966)273.

    Google Scholar 

  3. R.V. Pound and G.A. Rebka, Jr., Phys. Rev. Lett., 4(1960)274.

    ADS  Google Scholar 

  4. O.C. Kistner and A.W. Sunyar, Phys. Rev. Lett. 4(1960)412.

    Article  ADS  Google Scholar 

  5. G.K. Wertheim,The Mössbauer Effect (Academic Press, New York, 1964).

    Google Scholar 

  6. K.N. Shrivastava, Phys. Rev. B1(1970)955.

    Article  ADS  Google Scholar 

  7. K.N. Shrivastava, Phys. Stat. Sol. B117(1983)437.

    Google Scholar 

  8. H.K. Perkins and Y. Hazony, Phys. Rev. B.5(1972)7.

    Article  ADS  Google Scholar 

  9. K.N. Shrivastava, Phys. Rev B7(1973)921.

    Article  ADS  Google Scholar 

  10. B. Brunot, J. Chem. Phys. 61(1974)2360.

    Article  Google Scholar 

  11. G.M. Kalvius, U.F. Klein and G. Wortman, J. Phys. 35(1974)C6–139.

    Google Scholar 

  12. R.D. Taylor and E.K. Storms, Bull. Amer. Phys. Soc. 14(1969)836.

    Google Scholar 

  13. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14(1974)177; A.D. McLean and R.S. McLean, ibid. 26(1981)197; J.G. Snijders, P. Vernooijs and E.J. Baerends, ibid. 26(1981)483.

    ADS  Google Scholar 

  14. R. Jagannathan and K.N. Shrivastava, Hyp. Int. 7(1979)377.

    Article  Google Scholar 

  15. K.N. Shrivastava, Phys. Rev. B13(1976)2782.

    ADS  Google Scholar 

  16. K.N. Shrivastava, Phys. Lett. 70A(1979)483. E. Hartman and Ch. Eifrig, Chem. Phys. 58(1981)283.

    ADS  Google Scholar 

  17. C. Bansal and K.N. Shrivastava, Chem. Phys. Lett. 64(1979)388.

    Article  ADS  Google Scholar 

  18. C. Bansal and K.N. Shrivastava, Phys. Stat. Sol. (b) 109(1982)743.

    Google Scholar 

  19. G. Breit, Rev. Mod. Phys. 30(1953)507.

    ADS  Google Scholar 

  20. E. Simanek and A.Y.C. Wong, Phys. Rev. 166(1968)348.

    ADS  Google Scholar 

  21. E. Simanek and Z. Sroubek, Phys. Rev. 163(1967)275.

    ADS  Google Scholar 

  22. W.H. Flygare and D.W. Hafemeister, J. Chem. Phys. 43(1965)789.

    Google Scholar 

  23. K.N. Shrivastava, Phys. Rev. B20(1979)2634; 20(1979)5375; 21(1980)2702; Physica B100 (1980)67.

    ADS  Google Scholar 

  24. A. Singh and K.N. Shrivastava, Solid State Commun., 17(1975)1123.

    Google Scholar 

  25. K.N. Shrivastava, Phys. Rep. C20(1975)137.

    Article  ADS  Google Scholar 

  26. A. Singh and K.N. Shrivastava, Phys. Rev. B13(1976)2853; K.N. Shrivastava, Phys. Stat. Sol (b) 51(1972)377.

    ADS  Google Scholar 

  27. H. Daniel, M. Feil and B. Martin, Phys. Rev. B16(1977)3870.

    Article  ADS  Google Scholar 

  28. F. Pleiter and H. de Waard, in:Mössbauer Isomer Shifts, ed. G.K. Shenoy and F.E. Wagner (North-Holland, Amsterdam, 1978) p. 252.

    Google Scholar 

  29. C. Bansal and K.N. Shrivastava, Chem. Phys. Lett., 80(1981)87.

    Article  ADS  Google Scholar 

  30. K.N. Shrivastava, Phys. Lett. 91A(1982)33.

    ADS  Google Scholar 

  31. K.N. Shrivastava, Chem. Phys. Lett. 102(1983)198.

    Article  ADS  Google Scholar 

  32. J. Röhler, D. Wohlleben and G. Kaindl,Valence Instabilities, ed. P. Wachter and H. Boppart (North-Holland, Amsterdam, 1982) p. 341.

    Google Scholar 

  33. E.R. Bauminger, D. Froindlich, I. Nowik, S. Ofer, I. Felner and I. Mayer, Phys. Rev. Lett. 30(1973)1053.

    Article  ADS  Google Scholar 

  34. E.V. Sampathkumaran, L.C. Gupta and R. Vijayaraghavan, Phys. Rev. Lett., 43(1979)1189; J. Magn. Magn. Mat. 15–18(1980)977; S.H. Devare, H.G. Devare and J.A. Cameron, J. Phys. C14(1981)1491.

    ADS  Google Scholar 

  35. C.M. Varma and Y. Yafet, Phys. Rev. B13(1976)2950.

    Article  ADS  Google Scholar 

  36. R. Jullien and R.M. Martin, Phys. Rev. B26(1982)6173.

    Article  ADS  Google Scholar 

  37. H.A. Mook and R.M. Nicklow, Phys. Rev. B20(1979)1656.

    Article  ADS  Google Scholar 

  38. K.N. Shrivastava, Solid State Commun. 50(1984)615.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrivastava, K.N. Temperature dependence of the Mössbauer isomer shift. Hyperfine Interact 26, 817–843 (1985). https://doi.org/10.1007/BF02354640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02354640

Keywords

Navigation