Skip to main content
Log in

Antihydrogen production in a merged beam arrangement

  • Formation of and Experiments with Antihydrogen
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The production of antihydrogen by merging beams of antiprotons and positrons is described. Both beams, kept in storage devices, are continuously recirculated. Antihydrogen is formed by radiative recombination of positrons and antiprotons. Production rates of a few thousand per second are expected. The semi-relativistic atomic beam of antihydrogen would have a divergence of less than 1 mrad and a beam diameter of a few millimeter. The possibilities to increase these rates by induced recomtination are discussed. The scheme of antihydrogen production in overlapping beams is compared to other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Berger et al., Feasibility study for antihydrogen production at LEAR, Proposal to CERN, CERN-Heidelberg-Karlsruhe Collaboration, CERN/PSCC/85-45, PSCC/P86, CERN/PSCC/86-21, Add. 1 and CERN/PSCC/86-37 Add. 2.

  2. H. Herr, D. Möhl and A. Winnacker, InProc. 2nd Workshop on Physics with Cooled Low Energy Antiprotons at LEAR, Erice (1982), eds. U. Gastaldi and R. Klapisch (Plenum, New York, 1984) p. 659.

    Google Scholar 

  3. R. Neumann, H. Poth, A. Winnacker and A. Wolf, Z. Phys. A 313 (1983) 253.

    Article  Google Scholar 

  4. H. Poth, In:Proc. 2nd Conf. on the Intersection between Particle and nuclear Physics, Lake Louise (1986) ed. D.F. Geesaman, AIP Conf. Proc. No. 150 (AIP, New York, 1986) p. 580.

    Google Scholar 

  5. R. Neumann, in:Proc. Workshop on Fundamental Symmetries, Int. School of Physics with Low Energy Antiprotons, Erice, 1986, eds. P. Bloch, P. Pavlopoulos and R. Klapisch (Plenum, New York, 1987) p. 95.

    Google Scholar 

  6. R.S. Conti and A. Rich, In:Proc. Workshop on the Design of a Low-Energy Antimatter Facility, Madison, Wisconsin, 1985, ed. D. Cline (World Scientific Publ. Comp., Singapore, 1986) p. 97.

    Google Scholar 

  7. H. Poth, Atomic antimatter, submitted to Physica Scripta, Preprint CERN-EP/88-18, 1988.

  8. H. Hellwig et al., IEEE Trans. Instrum. IM-19 (1970) 200; L. Essen et al., Nature 229 (1971) 110.

  9. H. Poth, Appl. Phys. A 43 (1987) 287.

    Article  ADS  Google Scholar 

  10. H. Poth, In:Proc. Workshop on Atomic Physics with Positrons, London, 1987, eds. J.W. Humberston and E.A.G. Armour (Plenum Press, NY, 1987) p. 307.

    Google Scholar 

  11. A. Rich et al.,ibid. ref [10]Proc. Workshop on Atomic Physics with Positrions, London, 1987, eds. J.W. Humberston and E.A.G. Armour (Plenum Press, NY, 1987), p. 321.

    Google Scholar 

  12. H. Bethe and E. Salpeter, Quantum mechanics of one-and two-electron systems, in:Handbuch der Physik, Vol. 35 (Springer, Berlin, Heidelberg, New York, 1957) p. 88.

    Google Scholar 

  13. M. Sands, SLAC Report No. 121, 1970

  14. C. Bovet et al., CERN/MPS-SI/Int. DL/70/4, 1970.

  15. A. Vehanen et al., Appl. Phys. A 32 (1983) 2572; A.P. Mills, in:Positron Scattering in Gases, eds. J.W. Humberston and McDowell (Plenum Press, New York, 1981) p. 121; J Van House and P.W. Zitzewitz, Phys. Rev. A29 (1984) 96.

    Article  Google Scholar 

  16. R. Conti et al., Positron accumulation and storage for antihydrogen production, These proceedings, p. 201.

  17. J. Van House, A. Rich and P.W. Zitzewitz, Origins of Life 14 (1984) 413; A. Schulz, E.M. Gullikson, A.P. Mills, Jr., Phys. Rev. B34 (1986) 442.

    Article  ADS  Google Scholar 

  18. A. Wolf et al., Electron cooling of antiprotons at low energy, These proceedings, p. 217.

  19. R. Neumann, Fast antihydrogen beam spectroscopy, These proceedings, p. 305.

  20. P. Blatt, Laser enhanced positron capture, These proceedings, p. 295.

  21. H. Herr et al., In:Proc. 2nd Workshop on Physics with Cooled Low Energy Antiprotons at LEAR, Erice (1982) eds. U. Gastaldi and R. Klapisch (Plenum Press, New York, 1984) p. 659.

    Google Scholar 

  22. R. Medenwaldt et al.,Proc. Workshop on Physics at LEAR with Low Energy Antiprotons, Villars-sur-Ollon, 1987, eds. C. Amsler, G. Backenstoss, R. Klapisch, C. Leluc, D. Simon and L. Tauscher (Harwood Academic Publishers, Chur, 1988) p. 167.

    Google Scholar 

  23. A. Rich et al., Production and uses of polarized low-energy positron beams, These proceedings.

  24. H. Poth, In:Proc. Workshop on Fundamental Symmetries, Int. School of Physics with Low Energy Antiprotons, Erice, 1986, eds. P. Bloch, P. Pavlopoulos and R. Klapisch (Plenum, New York, 1987) p. 347.

    Google Scholar 

  25. J. Van House and P.W. Zitzewitz, Phys. Rev. A 29 (1984) 96.

    Article  ADS  Google Scholar 

  26. M. Skalsey, T.A. Girard, D. Newman and A. Rich, Phys. Rev. Lett. 49 (1982) 1778.

    Article  Google Scholar 

  27. G. Gabrielse et al., Antihydrogen production using trapped plasmas, These proceedings, p. 287.

  28. B. Deutch et al., Antihydrogen by positronium-antiproton collisions. These proceedings, p. 271.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poth, H., Seligmann, B., Schwab, W. et al. Antihydrogen production in a merged beam arrangement. Hyperfine Interact 44, 257–270 (1989). https://doi.org/10.1007/BF02398675

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02398675

Keywords

Navigation