Skip to main content
Log in

Mechanism of formation of magnetite from ferrous hydroxide in aqueous corrosion processes

  • Corrosion
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The stoichiometric conditions for the formation of ferrous hydroxide Fe(OH)2, by mixing Fe2+ ions with caustic soda NaOH, leads by oxidation to magnetite, irrelevant of the foreign anions, e.g. Cl or SO4 2−, as demonstrated from Mössbauer spectroscopy. The electrochemical potential Eh and pH value of the initial conditions correspond to the drastic change from basic to acidic medium, observed when varying the initial Fe2+/OH ratio. Mössbauer analysis of the end products of oxidation at various temperatures shows that magnetite is only obtained at stoichiometry at very low temperature, but extends off stoichiometry at higher temperatures. The mechanism of formation of magnetite through an intermediate compound is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.A. Olowe, J.M.R. Génin and Ph. Bauer, Hyperfine Interactions, 41(1988)501–4.

    Google Scholar 

  2. J.M.R. Génin, D. Rezel, Ph. Bauer, A. Olowe and A. Beral, Proc. Electrochemical Methods in Corrosion Research, Materials Science Forum, ed. G.E. Murch, 8(1986)477–90.

  3. A.A. Olowe and J.M.R. Génin, “Influence of temperature and the initial ratio of reactants on the formation of rusts in sulphated aqueous media”, this issue.

  4. D. Rezel, Ph. Bauer and J.M.R. Génin, Hyperfine Interactions, 42(1988)1075–78.

    Google Scholar 

  5. J.D. Bernal, D.R. Dasgupta and A.L. Mackay, Clay Minerals Bull., 4(1959)15–30.

    Google Scholar 

  6. S.K. Banerjee, W.O. Reilly and C.E. Johnson, J. Appl. Phys., 38(1967)1289.

    Article  Google Scholar 

  7. J.M.D. Coey, A.H. Morrish and Sawatsky, J. Phys. 32(1971)C1–271.

    Google Scholar 

  8. Y. Tamaura, C. Kameshima and T. Katsura, J. Electrochem. Soc., 128(1981), 1447–51.

    Google Scholar 

  9. M. Kiyama, Bull. Chem. Soc. Jpn., 47(1974)1646.

    Google Scholar 

  10. J.E.O. Mayne, J. Chem. Soc., (1963)129–32.

  11. J.E. Hiller, Werkat. Korro., 11(1966)943.

    Article  Google Scholar 

  12. H. Schwartz, Werkat. Korro., 23(1972)648.

    Article  Google Scholar 

  13. A. Girard and G. Chaudron, Comptes rendus, Ac. Sc., 200(1935)127–29.

    Google Scholar 

  14. T. Misawa, K. Hashimoto, S. Shimodaira, Corr. Sci., 14(1974)131–49.

    Article  Google Scholar 

  15. A.L. Mackay, “Proc. of 4th International Symposium on Reactivity of Solids”, ed. De Boer, (1961)571.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olowe, A.A., Rezel, D. & Génin, J.M.R. Mechanism of formation of magnetite from ferrous hydroxide in aqueous corrosion processes. Hyperfine Interact 46, 429–436 (1989). https://doi.org/10.1007/BF02398227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02398227

Keywords

Navigation