Skip to main content
Log in

Perturbed γ−γ angular correlations: A spectroscopy for point defects in metals and alloys

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Atomic defects which migrate and trap at impurity probe atoms can be labelled by the changes they induce in the hyperfine interactions of the probe nuclei. Many studies have been made using perturbed γ−γ angular correlations (PAC) and the111In probe because of the excellent resolution of different sites. Identification of the bound states is the key problem in applying hyperfine interactions methods to point defects studies. In this study three structure-sensitive methods are applied to help identify the atomic structures of various multivacancy complexes in Pt and Au: (1) Quadrupole interaction parameters are compared with results of point-charge calculations of electric-field gradients for 20 structures containing 1–4 vacancies in the fcc lattice. (2) Hyperfine interactions induced by decorating vacancy complexes with hydrogen atoms are measured and interpreted with the assistance of point-charge calculations. (3) Transformations between complexes observed by annihilation of vacancies by mobile self-interstitials are used to test the consistency of the identifications. Using these methods in conjunction with analysis of the trapping behavior which occurs during annealing of damaged samples, structural models are presented for divacancy (2V), 3V and 4V complexes in Pt, and 3V and 4V complexes in Au. The activation temperatures of the 3V defect in Au and Pt are determined to be 162 K and 390 K, respectively, and activation temperatures of defects in Ni, Cu, Pt and Au are compared. For Pt, trapping of H at 1V and 2V complexes is observed to lead to small changes in the quadrupole interactions, consistent with well shielded protonic charges. However, trapping at 3V and 4V complexes leads to very large changes which we attribute to atomic restructuring to the defect complexes. Finally, the application of the same methodology to interpret recent experiments on NiAl, an ordered alloy, is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Pleiter and C. Hohenemser, Phys. Rev. B25 (1982) 106.

    Article  ADS  Google Scholar 

  2. E. Recknagel, G. Schatz and Th. Wichert, in:Hyperfine Interactions of Radioactive Nuclei, ed. J. Christiansen, Topics in Current Physics, Vol. 31 (Springer, New York, 1983) p. 133.

    Google Scholar 

  3. Th. Wichert, Hyp. Int. 15/16 (1983) 335.

    Article  ADS  Google Scholar 

  4. Th. Wichert, in:Characterization of Defects in Materials, eds. R.W. Siegel, J.R. Weertmen and R. Sinclair, Mat. Res. Soc. Symp. Proc., Vol. 82 (1987) 35.

  5. R. Vianden, in:Nuclear Applications on Materials Science, eds. E. Recknagel and J.C. Soares, NATO ASI Series E: Applied Sciences, Vol. 144 (1988) 239.

  6. H.J. Wollenberger, in:Physical Metallurgy, eds. R.W. Cahn and P. Haasen (North-Holland, Amsterdam, 1983) p. 1139.

    Google Scholar 

  7. Vacancies and Interstitials in Metals, eds. A. Seeger, D. Schumacher, W. Schilling and J. Diehl (North-Holland, Amsterdam, 1970).

    Google Scholar 

  8. J. Nuclear Mater. 69/70 (1978).

  9. Point Defects and Defect Interactions in Metals, eds. J. Takamura, M. Doyama and M. Kiritani (University of Tokyo Press, 1982).

  10. Materials Science Forum 15–18 (1987).

  11. R.A. Johnson, J. Phys. F3 (1973) 295.

    Article  ADS  Google Scholar 

  12. A.G. Crocker, M. Doneghan and K.W. Ingle, Phil. Mag. A41 (1980) 21.

    ADS  Google Scholar 

  13. N.Q. Lam, N.V. Doan and L. Dagens, J. Phys. F: Met. Phys. 15 (1985) 799.

    Article  ADS  Google Scholar 

  14. C. Hohenemser, A.R. Arends, H. de Waard, H.G. Devare, F. Pleiter and S.A. Drentje, Hyp. Int. 3 (1977) 297.

    Article  ADS  Google Scholar 

  15. M.L. Swanson, L.M. Howe, A.F. Quenneville, Th. Wichert and M. Deicher, J. Phys. F14 (1984) 1603.

    Article  ADS  Google Scholar 

  16. M.L. Swanson and L.M. Howe, Nucl. Instr. Meth. in Phys. Res. 218 (1983) 613.

    Article  ADS  Google Scholar 

  17. G.S. Collins, S.L. Shropshire and H.-J. Jang, Defect and Diffusion Forum 66–69 (1989) 335.

    Google Scholar 

  18. G.S. Collins, S.L. Shropshire and H.-J. Jang, in:Proc. VIIIth Int. Conf. on Hyperfine Interactions, Prague, August 1989, eds. M. Finger and B. Sedlak, Hyp. Int. (1990) to appear.

  19. M. Deicher, O. Echt, E. Recknagel and Th. Wichert, Hyp. Int. 10 (1981) 667.

    Article  ADS  Google Scholar 

  20. S.L. Shropshire and G.S. Collins, in ref. [18].Proc. VIIIth Int. Conf. on Hyperfine Interactions, Prague, August 1989, eds. M. Finger and B. Sedlak, Hyp. Int. (1990) to appear.

  21. H.-G. Mueller, Z. Phys. B47 (1982) 119.

    Article  ADS  Google Scholar 

  22. A. Hoffmann, A. Willmeroth and R. Vianden, Z. Phys. B62 (1986) 335.

    Article  ADS  Google Scholar 

  23. H.-G. Mueller and H. Hahn, Phil. Mag. A50 (1984) 71.

    ADS  Google Scholar 

  24. J. Fan and G.S. Collins, in ref. [18]Proc. VIIIth Int. Conf. on Hyperfine Interactions, Prague, August 1989, eds. M. Finger and B. Sedlak, Hyp. Int. (1990) to appear.

  25. H. Frauenfelder and R.M. Steffen, in:Alpha-, Beta- and Gamma-Ray Spectroscopy, ed. K. Siegbahn, (North-Holland, Amsterdam, 1968).

    Google Scholar 

  26. A.R. Arends, C. Hohenemser, F. Pleiter, H. de Waard, L. Chow and R.M. Suter, Hyp. Int. 8 (1980) 191.

    Article  ADS  Google Scholar 

  27. F.D. Feiock and W.R. Johnson, Phys. Rev. 187 (1969) 39.

    Article  ADS  Google Scholar 

  28. D. Wegner, Hyp. Int. 23 (1985) 179. Note that the first factor in parentheses in eq. (5b) is incorrect, and should be replaced by (1-η2).

    Article  ADS  Google Scholar 

  29. A.R. Arends, C. Hohenemser, F. Pleiter, H. de Waard, L. Chow and R.M. Suter, Hyp. Int. 8 (1980) 191.

    Article  ADS  Google Scholar 

  30. G.S. Collins, G. McGhee, S.L. Shropshire, H.-J. Jang, J. Fan and R.B. Schuhmann, in ref. [18].Proc. VIIIth Int. Conf. on Hyperfine Interactions, Prague, August 1989, eds. M. Finger and B. Sedlak, Hyp. Int. (1990) to appear.

  31. G. McGhee, M.S. thesis, Washington State University, 1989 (unpublished).

  32. C. Allard, G.S. Collins and C. Hohenemser, Phys. Rev. B32 (1985) 4839.

    Article  ADS  Google Scholar 

  33. G.S. Collins, G.P. Stern and C. Hohenemser, Phys. Lett. 84A (1981) 289.

    ADS  Google Scholar 

  34. Th. Wichert, in:Point Defects and Defect Interactions in Metals, eds. J. Takamura, M. Doyama and M. Kiritani (University of Tokyo Press, Tokyo, 1982) p. 19; M. Deicher, O. Echt, E. Recknagel and Th. Wichert in:Nuclear and Electron Resonance Spectroscopies Applied to Materials Science, eds. E.N. Kaufmann and G.K. Shenoy, (Elsevier, New York, 1981)) p. 435; Th. Wichert (private communication).

    Google Scholar 

  35. Th. Wichert, Materials Science Forum 15–18 (1987) 829.

    Article  Google Scholar 

  36. F. Pleiter, W.Z. Venema and A.R. Arends, Hyp. Int. 4 (1978) 693.

    Article  ADS  Google Scholar 

  37. M. Deicher, R. Minde and Th. Wichert, Hyp. Int. 15/16 (1983) 401.

    Article  ADS  Google Scholar 

  38. G.S. Collins and R.B. Schuhmann, Hyp. Int. 15/16 (1983) 395.

    Article  ADS  Google Scholar 

  39. W. Witthuhn, H. Föttinger, D. Forkel, M. Iwatschenko-Bohro, F. Meyer and H. Wolf, Phys. Lett. 119A (1986) 304.

    ADS  Google Scholar 

  40. R. Vianden and U. Feuser, Phys. Rev. Lett. 61 (1988) 1981.

    Article  ADS  Google Scholar 

  41. G.S. Collins and R.B. Schuhmann, Phys. Rev. B34 (1986) 502.

    Article  ADS  Google Scholar 

  42. G.S. Collins, H.-J. Jang and S. Shropshire, in:Nuclear Physics Application on Materials Science, eds. E. Recknagel and J.C. Soares, NATO ASI Series E: Applied Sciences, Vol. 144 (Kluwer, Dordrecht, 1988) p. 415.

    Google Scholar 

  43. K. Zainun, M.S. report, Washington State University, 1989 (unpublished).

  44. S.L. Shropshire, M.S. research report, Washington State University, 1988 (unpublished).

  45. G.S. Collins, C. Allard, R.B. Schuhmann and C. Hohenemser, Phys. Rev. B28 (1983) 2940; and erratum. Phys. Rev. B31 (1985) 2528.

    Article  ADS  Google Scholar 

  46. Th. Wichert and M.L. Swanson, Hyp. Int. 23 (1985) 231.

    Article  ADS  Google Scholar 

  47. F. Besenbacher, S.M. Myers and J.K. Norskov, Nucl. Inst. Meth. in Phys. Res. B7/8 (1985) 55.

    Article  ADS  Google Scholar 

  48. M.J. Puska, R.M. Nieminen and P. Jena, Phys. Rev. B35 (1987) 6059.

    Article  ADS  Google Scholar 

  49. K. Post and F. Pleiter, Hyp. Int. 35 (1987) 615.

    ADS  Google Scholar 

  50. R.-D. Roitzheim and R. Vianden, in ref. [18].Proc. VIIIth Int. Conf. on Hyperfine Interactions, Prague, August 1989, eds. M. Finger and B. Sedlak, Hyp. Int. (1990) to appear.

  51. J. Trager, M. Karger, T. Butz and F.E. Wagner, Hyp. Int. 15/16 (1983) 795.

    Article  ADS  Google Scholar 

  52. A. Weidinger, in:Nuclear Physics Applications on Materials Science, eds. E. Recknagel and J.C. Soares, NATO ASI Series E: Applied Sciences, Vol. 144 (Kluwer, Dordrecht 1988) p. 275.

    Google Scholar 

  53. R.P. Sahu, K.C. Jain and R.W. Siegel, J. Nucl. Mater. 69 & 70 (1978) 264.

    Article  Google Scholar 

  54. A. van den Beukel, in:Vacancies and Interstitials in Metals, eds. A. Seeger, D. Schumacher, W. Schilling and J. Diehl (North-Holland, Amsterdam, 1970) p. 427.

    Google Scholar 

  55. G.R. Piercy, Phil. Mag. 5 (1980) 201.

    ADS  Google Scholar 

  56. I. Kovacs and B. Sas, Phil. Mag. 34 (1976) 937.

    ADS  Google Scholar 

  57. E. Verbiest, H. Pattyn and J. Odeurs, Nucl. Instr. Meth. 182/183 (1981) 515.

    Article  Google Scholar 

  58. L. Niesen and H. de Waard, Nucl. Instr. Meth. 209/210 (1983) 441.

    Article  Google Scholar 

  59. R.W. Balluffi, J. Nucl. Materl. 69 & 70 (1978) 240.

    Article  Google Scholar 

  60. T.B. Massalski, in:Physical Metallurgy, eds. R.W. Cahn and P. Haasen (North-Holland, Amsterdam, 1983) p. 201.

    Google Scholar 

  61. J. Fan, M.S. report, Washington State University, 1989 (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, G.S., Shropshire, S.L. & Fan, J. Perturbed γ−γ angular correlations: A spectroscopy for point defects in metals and alloys. Hyperfine Interact 62, 1–34 (1990). https://doi.org/10.1007/BF02407659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02407659

Keywords

Navigation