Skip to main content
Log in

Mössbauer spectroscopy in space

  • Invited Contributions
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Nearly 40 years after the discovery of the Mössbauer effect for the first time a Mössbauer spectrometer will leave our planet to explore in situ the surface of another solar system body: the red planet Mars [1]. We are currently developing a miniaturized Mössbauer spectrometer (MIMOS) which is part of the scientific payload of the Russian Mars96 mission, to be launched within the next 2–4 years [2,3]. To fulfill the requirements for a space mission to the planet Mars, all parts of the spectrometer had to be extremely miniaturized and ruggedized to withstand the space flight and Mars environmental conditions. The relevant parts (e.g. drive, detector system, electronics etc.) will be described in more detail and its characteristics compared to standard systems. Because of this new development there now is a growing interest to include a Mössbauer (MB) instrument in future space missions to other solar system bodies as for instance Venus, the terrestrial Moon, and a comet nucleus. Because of extremely different environmental conditions (e.g. nearly zero gravity on the surface of a comet nucleus, high pressure and temperature on the surface of Venus, etc.) different instrument designs and concepts are required for different missions. We will present some ideas for various types of missions, as well as the motivation for using Mössbauer spectroscopy in these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Knudsen, M.B. Madsen, M. Olsen, L. Vistisen, C.B. Koch, S. Mørup, E. Kankeleit, G. Klingelhöfer, E.N. Evlanov, V.N. Khromov, L.M. Mukhin, O.F. Prilutskii, B. Zubkov, G.V. Smirnov and J. Juchniewicz, Hyp. Int. 68 (1991) 83.

    Google Scholar 

  2. G. Klingelhöfer, J. Foh, P. Held, H. Jäger, E. Kankeleit and R. Teucher, Hyp. Int. 71 (1992) 1449.

    Google Scholar 

  3. E. Kankeleit, J. Foh, P. Held, G. Klingelhöfer and R. Teucher, Hyp. Int. 90 (1994) 107.

    Article  Google Scholar 

  4. W.M. Irvine, The Planetary Report 7 (6) (1987) 6.

    Google Scholar 

  5. J.M. Knudsen, Hyp. Int. 47 (1989) 3.

    Google Scholar 

  6. The Comet Rendezvous Asteroid Flyby Mission. A Search for our Beginnings, National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory, CALTECH, Pasadena, CA.

  7. T.J. Wdowiak and D.G. Agresti, Nature 311 (1984) 140.

    Article  Google Scholar 

  8. M.B. Madsen, S. Mørup, T. V.V. Costa, J.M. Knudsen and M. Olsen, Hyp. Int. 41 (1988) 827.

    Google Scholar 

  9. C.L. Herzenberg and D.L. Riley, Science 167 (1970) 683.

    Google Scholar 

  10. A.H. Muir Jr., R.M Housley, R.W. Grant, M. Abdel-Gawad and M. Blander, Science 167 (1970) 688.

    Google Scholar 

  11. H. Fernandez-Moran, S.S. Hafner, M. Ohtsuki and D. Virgo, Science 167 (1970) 686.

    Google Scholar 

  12. P. Gay, G.M. Bancroft and M.G. Brown, Science 167 (1970) 626.

    Google Scholar 

  13. J. Galazkha-Friedman and J. Juchniewicz, Martian Mössbauer Spectrometer MarMös, Project Proposal, Space Research Center, Polish Academy of Sciences, February 1989.

  14. J. Foh, P. Held, H. Jäger, E. Kankeleit, G. Klingelhöfer and U. Imkeller, Ann. Geophys. suppl. Vol. 9 C452 (1991).

    Google Scholar 

  15. E.N. Evlanov, L.M. Mukhin, O.F. Prilutski, G.V. Smirnov, J. Juchniewicz, E. Kankeleit, G. Klingelhöfer, J.M. Knudsen and C. d'Uston, Lunar Planet. Sci. XXII (1991) 361.

    Google Scholar 

  16. R.V. Morris, D.G. Agresti, T.D. Shelfer and T.J. Wdowiak, Lunar Planet. Sci. XX (1989) 721.

    Google Scholar 

  17. T.D. Shelfer, M.M. Pimperl, D.G. Agresti, E.L. Wills and R.V. Morris, Lunar Planet. Sci. XXII (1991) 1229.

    Google Scholar 

  18. D.G. Agresti, E.L. Wills, T.D. Shelfer, J.S. Iwanczyk, N. Dorri and R.V. Morris, Lunar Planet. Sci. XXI (1990) 5.

    Google Scholar 

  19. E.N. Evlanov, V.A. Frolov, O.F. Prilutski, A.M. Rodin and G.V. Veselova,Mössbauer Spectrometer for Mineralogical Analysis of the Mars Surface: Mössbauer Source Considerations, Internal Report, Space Research Institute (IKI), Moscow, Russia.

  20. E.N. Evlanov, V.A. Frolov, O.F. Prilutski, A.M. Rodin, G.V. Veselova and G. Klingelhöfer, Lunar Planet. Sci. XXIV (1993) 459.

    Google Scholar 

  21. A.W. Gummer, Nucl. Instr. Meth. B 34 (1988) 224.

    Google Scholar 

  22. G. Klingelhöfer, U. Imkeller, E. Kankeleit and B. Stahl, Hyp. Int. 71 (1992) 1445.

    Google Scholar 

  23. E. Kankeleit, Rev. Sci. Instr. 35 (1964) 194.

    Article  Google Scholar 

  24. E. Kankeleit, in:Proc. Int. Conf. on Mössbauer Spectroscopy, Vol. 2, Cracow (1975) 43.

    Google Scholar 

  25. R. Teucher, Miniaturisieter Mössbauerantrieb, Diploma Thesis, TH Darmstadt, Inst. F. Nuclear Physics, Germany (1994).

    Google Scholar 

  26. S. Margulies and J.R. Ehrman, Nucl. Instr. Meth. 12 (1961) 131.

    Article  Google Scholar 

  27. Ch. Weinheimer, M. Schrader, J. Bonn, Th. Loeken and H. Backe, Nucl. Instr. Meth. A 311 (1992) 273.

    Google Scholar 

  28. P. Held, R. Teucher, G. Klingelhöfer, J. Foh, H. Jäger and E. Kankeleit, Lunar Planet. Sci. XXIV(1993) 633.

    Google Scholar 

  29. R. Rieder, private communication on developments of AMPTEC, USA.

  30. T.E. Economou, J.S. Iwanczyk and R. Rieder, Nucl. Instr. Meth. A 322 (1992) 633.

    Google Scholar 

  31. K.J. McCarthy and A. Wells, in:Proc. SPIE Technical Symposium, San Diego, CA, July 1992.

  32. J.M. Knudsen, S. Mørup and J. Galzkha-Friedman, Hyp. Int. 57 (1990) 2231.

    Google Scholar 

  33. R.V. Morris and H.V. Lauer Jr., J. Geophys. Res. 95 (1990) 5101.

    Google Scholar 

  34. J.L. Bishop, C.M. Pieters and R.G. Burns, Lunar Planet. Sci. XXIV (1993) 115.

    Google Scholar 

  35. J.L. Bishop, C.M. Pieters, S.F. Pratt and W. Patterson, Lunar Planet. Sci. XXIV (1993) 117.

    Google Scholar 

  36. J.L. Bishop, C.M. Peters and R.G. Burns, Geochim. Cosmochim. Acta 57 (No. 19), in press.

  37. A. Banin, D.F. Blake and T. Benshlomo, Lunar Planet. Sci. XXII (1991) 49.

    Google Scholar 

  38. A. Banin, B.C. Clark and H. Wänke, in:Mars, eds. H.H. Kieffer, B.M. Jakosky, C.W. Snyder and M.S. Matthew (The University of Arizona Press, Tucson, 1992).

    Google Scholar 

  39. J.F. Bell III, T.B. McCord and P.D. Owensby, J. Geophys. Res. 95 (1990) 14447.

    Google Scholar 

  40. B. Fegley Jr. and K. Lodders, Lunar Planet. Sci. XXIV (1993) 467.

    Google Scholar 

  41. G. Klingelhöfer, B. Fegley Jr. and K. Lodders, Lunar Planet. Sci. XXV (1994) 707.

    Google Scholar 

  42. B. Fegley Jr., G. Klingelhöfer, R.A. Brackett and N. Izenberg, Meteoretics 29 (1994) 465.

    Google Scholar 

  43. B. Fegley, Jr., K. Lodders, A.H. Treiman and G. Klingelhöfer, The rate of pyrite decomposition on the surface of Venus, Icarus 1994, submitted.

  44. B. Fegley, Jr. and A.H. Treiman, in:Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, Geophysical Monograph 66 (American Geophysical Union, Washington, 1992).

    Google Scholar 

  45. Mars-94, Unmanned Spacecraft Mission to Mars (brief description), January 1991, Space Research Inst., Vernadsky Inst. Geochemistry and Analytic chemistry, USSR Academy of sciences; Babakin Center, USSR.

  46. Scientific results of the Viking Project, J. Geophys. Res. 82 (28) (1977).

  47. R.V. Morris, D.G. Agresti, H.V. Lauer Jr., J.A. Newcomb, T.D. Shelfer and A.V. Murali, J. Geophys. Res. 94 (1989) 2760.

    Google Scholar 

  48. J.M.D. Coey, S. Mørup, M.B. Madsen and J.M. Knudsen, J. Geophys. Res. 95 (B9) (1990) 14423.

    Google Scholar 

  49. M.H. Carr,The Surface of Mars (Yale University Press, New Haven, 1981).

    Google Scholar 

  50. R. Burns and A. Banin, eds.,Workshop on Chemical Weathering on Mars, LPI Tech. Rpt. 92-04, Part 1 (Lunar and Planetary Institute, Houston, 1992).

    Google Scholar 

  51. R. Burns and A. Banin, eds.,Workshop on Chemical Weathering on Mars, LPI Tech. Rpt. 92-04, Part 2 (Lunar and Planetary Institute, Houston, 1993).

    Google Scholar 

  52. D.G. Agresti, R.V. Morris, E.L. Wills, T.D. Shelfer, M.M. Pimperl, M. Shen, B.C. Clark and B.D. Ramsey, Hyp. Int. 72 (1992) 285.

    Google Scholar 

  53. O. Prilutskii, Space Research Institute (IKI), Moscow, internal report from Minsk (1990).

  54. Technical Requirements on Providing the Planetary Quaratine during Conduction of the Mars 94/96 Missions, Internal Report of the Centre National d'Etudes Spatiales (CNES), Toulouse, France, April 1993.

  55. M.B. Madsen, J.M. Knudsen, L. Vistisen and R.B. Hargraves, Lunar Planet. Sci. XXIV (1993) 917.

    Google Scholar 

  56. J.M. Knudsen, H.C. Ørsted Institute, University of Copenhagen, Denmark, private communication.

  57. G. Klingelhöfer and E. Kankeleit, Internal Proposal to Russian Space Agency IKI for an additional experiment using magnetic separation capabilities of a magnet array (1992).

  58. P. Baltes, J. Foh, H. Jäger, E. Kankeleit, Ch. Müntz, H. Oeschler, S. Sartorius, A. Wagner and the KaoS Collaboration,A New Modular Transputer-Based Data Acquisition System, GSI Scientific Report (1990) p. 346.

  59. P. Baltes, Diploma Thesis, Institute for Nuclear Physics, TH Darmstadt, Germany (1993).

    Google Scholar 

  60. MARSNET, a Network of Stations on the Surface of Mars, ESA Publication SCI (91) 6.

  61. B. Pavri et al., Steep-sided domes on Venus: characteristics, geologic setting, and eruption conditions from Magellan data, J. Geophys. Res. Planets (1992), in press.

  62. V. Baker et al., Channels and valleys on Venus: preliminary analysis of Magellan data, J. Geophys. Res. Planets (1992), in press.

  63. G. Pettengill et al., Venus surface radio-thermal emission as observed by Magellan, J. Geophys. Res. Planets 97 (1992) 13091.

    Google Scholar 

  64. C. Pieters, J.W. Head, W. Patterson, S. Pratt, J. Garvin, V.L. Barsukov, A.T. Basilevsky, I.L. Khodakovsky, A.S. Selivanov, A.S. Panofilov, Yu.M. Getkin and Y.M. Narayeva, Science 234 (1986) 1379.

    Google Scholar 

  65. B. Fegley Jr., N.H. Treiman and V.L. Sharpton, Proc. Lunar Planet. Sci. Conf. 22 (1992) 3.

    Google Scholar 

  66. U. von Zahn, S. Kumar, H. Niemann and R.G. Prinn, in:Venus, eds. D.M. Hunten, L. Colin, T.M Donahue and V.I. Moroz (University of Arizona Press, Tucson, 1983) pp. 299–430.

    Google Scholar 

  67. R.G. Prinn, in:The Photochemistry of Atmospheres, ed. J.S. Levine (Academic Press, New York, 1985) pp. 281–336.

    Google Scholar 

  68. G.H. Pettengill, P.G. Ford and S. Nozette, Science 217 (1982) 640.

    Google Scholar 

  69. G.H. Pettengill, P.G. Ford and B.D. Chapman, J. Geophys. Res. 93 (1988) 14881.

    Google Scholar 

  70. G.H. Pettengill, P.G. Ford, W.T.K. Johnson, P.K. Raney and L.A. Soderblum, Science 252 (1991) 260.

    Google Scholar 

  71. J.W. Head III, Brown University, RI, USA, private communication.

  72. J. Bradley, Jet Propulsion Laboratory (JPL), Pasadena, CA, USA, private communication.

  73. J.W. Head III et al., Discovery Venera Surface-Atmosphere Geochemistry Experiments (SAGE), NASA Discovery Missions Workshop, Concept No. 55, September 1992.

  74. AMPTEK Inc. product information on X-ray detector with a 7 mm2 Si-PIN-Diode (XR-100TR); R. Rieder, MPI Cosmochemie, Mainz, Germany, private communication (August 1994); J. Pantazis, AMPTEK Inc., Bedford, MA, USA, private communication (August 1994).

  75. J.F. Butler, F.P. Doty and C.L. Lingren, IEEE Trans. Nucl. Sci. 39 (1992) 605.

    Article  Google Scholar 

  76. A. Niemelae and H. Sipilae, Outokumpu Instruments Oy, Riihitontuntie 7C, FIN-02201 Espoo, Finland.

  77. AMPTEK Inc. product information on CdZnTe detector system: XR-100TR;Evaluation of CdZnTe Detectors for Soft X-ray Applications, R. Rieder, MPI Cosmocheie, Mainz, Germany, private communication (August 1994); John Pantazis, AMPTEK Inc., Bedfore, MA, USA, private communication (August 1994).

  78. W.W. Mendell, ed.,Lunar Bases and Space Activities of the 21st Century (Lunar and Planetary Institute, Houston, 1985).

    Google Scholar 

  79. E. Teller, in:Lunar Bases and Space Activities of the 21st Century, ed. W.W. Mendell (Lunar and Planetary Institute, Houston, 1985).

    Google Scholar 

  80. R.V. Morris, NASA Johnson Space Center, Houston, Texas, USA, private communication.

  81. M.A. Gibson, C.W. Knudsen, D.J. Brueneman, H. Kanamori, R.O. Ness, L.L. Sharp, D.W. Brekke, C.C. Allen, R.V. Morris, L.P. Keller and D.S. Mckay, Lunar Planet. Sci. XXIV (1993) 531.

    Google Scholar 

  82. S.S. Hafner, in:Mössbauer Spectroscopy, Topics in Applied Physics, Vol. 5, ed. U. Gonser (Springer, Berlin, 1975).

    Google Scholar 

  83. ROSETTA Comet Rendezvous Mission, European Space Agency (ESA), report SCI(93)7, September 1993.

  84. F.L. Whipple, Astrophys. J. 111 (1950) 375

    Article  Google Scholar 

  85. F.L. Whipple, Astrophys. J. 113 (1950) 464.

    Article  Google Scholar 

  86. Stöffler et al., in:ROSETTA Comet Rendezvous Mission, European Space Agency (ESA), report SCI(93)7, September 1993.

  87. B. Mason and Wiik, Am. Mus. Novitates 2106 (1962) 1.

    Google Scholar 

  88. B. Mason, Space Sci. Rev. 1 (1963) 621.

    Article  Google Scholar 

  89. P. Ramdohr, J. Geophys. Res. 68 (1963) 201.

    Google Scholar 

  90. M.B. Madsen, J.M. Knudsen, L. Vistisen and H.G. Jensen, in:The Environmental Model of Mars, ed. K. Szegö, COSPAR Colloquia Vol. 2, Jan. 1990.

  91. T.E. Bunch and A.M. Reid, Meteoritics 10 (1975) 303.

    Google Scholar 

  92. E.M Stolper and H.Y. McSween Jr., Geochim. Cosmochim. Acta 43 (1979) 1475.

    Article  Google Scholar 

  93. M.B. Madsen, M. Olsen, J.M. Knudsen, D. Petersen and L. Vistisen, Lunar Planet. Sci. XXIII (1992) 825.

    Google Scholar 

  94. H. von Hoerner, vH & S Space Systems, Germany, private communication (1994).

  95. H. Rosenbauer, Max-Planck Institute for Aeronomie, Kathlenburg-Lindau, Germany, private communication.

  96. R. Rieder, MPI Cosmochemie, Mainz, Germany, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingelhöfer, G., Held, P., Teucher, R. et al. Mössbauer spectroscopy in space. Hyperfine Interact 95, 305–339 (1995). https://doi.org/10.1007/BF02146322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02146322

Keywords

Navigation