Skip to main content
Log in

Growth ofDunaliella viridis Teodoresco: effect of salinity, temperature and nitrogen concentration

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The growth of a strain ofD. viridis has been studied in batch culture under different combinations of temperature, salinity and nitrogen concentrations. Changes in these variables have a significant effect on cell division, biomass production, cell volume and pigment yield. This strain grows optimally at 1 M NaCl and 30 °C. Increasing salinity up to 4 M NaCl leads to a significant decrease of cell division rate and maximal population; growth at lower temperature decreases the rate of division of the cells but increases maximal cell density. Pigment yield decreases with increasing salinity and increases with increasing temperature. Nitrogen concentration has a large effect on total cell biomass and pigment production, but not on cell division rate. Saturation of growth occurs at 5 mM NO 3 ; higher concentration (e.g. 10 mM) leads to a decrease of maximal cell density and photosynthetic pigment content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ben-Amotz A, Avron M (1973) The role of glycerol in the osmotic regulation of the halophilic algaDunaliella parva. Plant Physiol. 51: 875–878.

    CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1980) Glycerol, β-carotene and dry algal meal production by commercial cultivation ofDunaliella. In Shelef G, Soeder CJ (eds), Algae Biomass. Elsevier/North-Holland Biomedical Press, Amsterdam, 603–610.

    Google Scholar 

  • Ben-Amotz A, Avron M (1983) Accumulation of metabolites by halotolerant algae and its industrial potential. Ann. Rev. Microbiol. 37: 95–119.

    CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1990) The biotechnology of cultivating halotolerant algaDunaliella. Tibtech. 8: 121–126.

    CAS  Google Scholar 

  • Borowitzka LJ (1981) The microflora. Adaptation to life in extremely saline lakes. Hydrobiologia 81: 33–46.

    Article  Google Scholar 

  • Borowitzka LJ, Borowitzka MA, Moulton TP (1984) The mass culture ofDunaliella salina for fine chemicals: from laboratory to pilot plant. Hydrobiologia 116/117: 115–134.

    Article  Google Scholar 

  • Borowitzka LJ, Kessly DS, Brown AD (1977) The salt relations ofDunaliella. Further observations on glycerol production and its regulation. Arch. Microbiol. 113: 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka LJ, Moulton TP, Borowitzka MA (1985) Salinity and the commercial production of beta-carotene fromDunaliella salina. In Barclay WJ, McIntosh R (eds), Algal Biomass: an Interdisciplinary perspective. J. Cramer Verlag, Verduz 217–222.

    Google Scholar 

  • Borowitzka MA (1986) Microalgae as sources of fine chemicals. Microbiol. Sci. 3: 372–375.

    CAS  PubMed  Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988)Dunaliella. In Borowitzka MA, Borowitzka LJ (eds), Microalgal biotechnology. Cambridge University Press, Cambridge, 27–58.

    Google Scholar 

  • Brown AD, Borowitzka LJ (1979) Halotolerance ofDunaliella. In Lewandowsky M, Hutner SH (eds), Physiology and Biochemistry of Protozoa, Vol. I. Academic Press, New York, 139–190.

  • Butcher RW (1959) An introductory account of the smaller algae of the British coastal waters. I. Introduction and Chlorophyceae. Fish. Invest. Ser. IV: 1–74.

    Google Scholar 

  • Caperon J, Meyer J (1972) Nitrogen-limited growth of marine phytoplankton. I. Changes in population characteristics with steady-state growth rate. Deep Sea Res. 19: 601–618.

    CAS  Google Scholar 

  • Chang FH, Wear RG, Reynolds J (1986) Effects of salinity, temperature, and light intensity on the growth rates of two halophilic phytoflagellates in mixed culture. New Zeal. J. mar. freshw. Res. 20: 467–478.

    Google Scholar 

  • Davison IR (1991) Environmental effect on algal photosynthesis: temperature. J. Phycol. 27: 2–8.

    Article  Google Scholar 

  • Eppley RW, Sloan PR (1966) Growth rates of marine phytoplankton; correlation with light absorption by cell chlorophylla. Pysiol. Pl. 19: 47–59.

    CAS  Google Scholar 

  • Fábregas J, Herrero C, Cabezas B, Abalde J (1987) Growth and biochemical variability of the marine microalgaChlorella stigmatophora in batch cultures with different salinities and nutrient gradient concentration. Br. phycol. J. 22: 269–276.

    Google Scholar 

  • Fábregas J, Herrero C, Cabezas B, Liaño R, Abalde J (1986) Response of the marine microalgaDunaliella tertiolecta to nutrient concentration and salinity variations in batch culture. J. Plant Physiol. 125: 475–484.

    Google Scholar 

  • Falkowsky PG, Stone DP (1975) Nitrate uptake by marine phytoplankton: energy sources and the interaction with carbon fixation. Mar. Biol. 32: 77–84.

    Google Scholar 

  • Gibor A (1956) The culture of brine algae. Biol. Bull. 111: 223–229.

    Google Scholar 

  • Gimmler H, Weidemann C, Moller EM (1981) The metabolic response of the halotolerant algaDunaliella parva to hypertonic shocks. Ber. Deutsch. Bot. Ges. Bd. 94: 613–634.

    CAS  Google Scholar 

  • Ginzburg M, Ginzburg B-Z (1981) Interrelationships of light, temperature, sodium chloride and carbon source in growth of halotolerant and halophilic strains ofDunaliella. Br. phycol. J. 16: 313–324.

    Google Scholar 

  • Goldman JC (1977) Temperature effects on phytoplankton growth in continuous culture. Limnol. Oceanogr. 22: 932–936.

    Google Scholar 

  • Javor B (1989) Hypersaline environments: microbiology and biogeochemistry. Brock/Springer Series in Contemporary Bioscience, Springer-Verlag. 328 pp.

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophyllsa, b, c 1 andc 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167: 191–194.

    CAS  Google Scholar 

  • Jiménez C, Niell FX (1990) Influence of temperature and nitrogen concentration on photosynthesis ofDunaliella viridis Teodoresco. J. appl. Phycol. 2: 309–317.

    Article  Google Scholar 

  • Jiménez C, Niell FX, Fernández JA (1990) The photosynthesis ofDunaliella parva Lerche as a function of temperature, light intensity and salinity. Hydrobiologia 197: 165–172.

    Article  Google Scholar 

  • Loeblich LA (1972) Studies on the brine flagellateDunaliella salina. Ph. D. thesis, University of California, San Diego.

  • Morris I, Glover HE (1974) Questions on the mechanism of temperature adaptation in marine phytoplankton. Mar. Biol. 24: 147–154.

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry. WH Freemann & Company, San Francisco. 776 pp.

    Google Scholar 

  • Van Auken OW, McNulty IB (1973) The effect of environmental factors on the growth of a halophilic species of algae. Biol. Bull. 145: 210–222.

    Google Scholar 

  • Wegmann K, Metzner H (1971) Synchronization ofDunaliella cultures. Arch. Microbiol. 78: 360–367.

    Google Scholar 

  • Williams FM (1971) Dynamics of microbial populations. In Patten BC (ed.), Systems Analysis and Simultation in Ecology, Vol. I. Academic Press, 197–267.

Download references

Author information

Authors and Affiliations

Authors

Additional information

address for correspondence

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, C., Niell, F.X. Growth ofDunaliella viridis Teodoresco: effect of salinity, temperature and nitrogen concentration. J Appl Phycol 3, 319–327 (1991). https://doi.org/10.1007/BF02392885

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392885

Key words

Navigation