Skip to main content
Log in

A molecular model for the active site of S-adenosyl-l-homocysteine hydrolase

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

S-adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase, EC 3.3.1.1.), a specific target for antiviral drug design, catalyzes the hydrolysis of AdoHcy to adenosine (Ado) and homocysteine (Hcy) as well as the synthesis of AdoHcy from Ado and Hcy. The enzyme isolated from different sources has been shown to contain tightly bound NAD+.

Based on the 2.0 Å-resolution X-ray crystal structure of dogfish lactate dehydrogenase (LDH), which is functionally homologous to AdoHcy hydrolase, and the primary sequence of rat liver AdoHcy hydrolase, we have derived a molecular model of an extended active site for AdoHcy hydrolase. The computational mutation was performed using the software MUTAR (Yeh et al., University of Kansas, Lawrence), followed by molecular mechanics optimizations using the programs AMBER (Singh et al., University of California, San Francisco) and YETI (Vedani, University of Kansas). Solvation of the model structure was achieved by use of the program SOLVGEN (Jacober, University of Kansas); 56 water molecules were explicitly included in all refinements. Some of these may be involved in the catalytic reaction.

We also studied a model of the complex of AdoHcy hydrolase with NAD+, as well as the ternary complexes of the redox reaction catalyzed by AdoHcy hydrolase and has been used to differentiate the relative binding strength of inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ueland P.M., Pharmacol. Rev., 34 (1982) 223.

    Google Scholar 

  2. Hohman R.J., Guitton M.C. and Veron M., Proc. Natl. Acad. Sci. USA, 82 (1985) 4578.

    Google Scholar 

  3. Matuszewska B. and Borchardt R.T., J. Biol. Chem., 262 (1987) 265.

    Google Scholar 

  4. Keller B.T. and Borchardt R.T., In: DeClercq E. and Walker R.T. (Eds.), Antiviral Drug Development, Plenum Press, New York, 1988, pp. 123–138.

    Google Scholar 

  5. Borchardt R.T., Keller B.T. and Patel-Thombre U., J. Biol. Chem., 259 (1984) 4353.

    Google Scholar 

  6. DeClercq E., Antimicrob. Agents Chemother., 28 (1985) 84.

    Google Scholar 

  7. Keller B.T., Clark R.S., Pegg A.E. and Borchardt R.T., Mol. Pharmacol., 28 (1985) 364.

    Google Scholar 

  8. Guranowski A., Montgomery J.A., Cantoni G.L. and Chiang P.K., Biochemistry, 20 (1981) 110.

    Google Scholar 

  9. Montgomery J.A., Acc. Chem. Res., 19 (1986) 293.

    Google Scholar 

  10. Narayanan S.R., Keller B.T., Borcherding D.R., Scholtz S.A. and Borchardt R.T., J. Med. Chem., 31 (1987) 500.

    Google Scholar 

  11. Hasobe M., McKee J.G., Borcherding D.R., Keller B.T. and Borchardt R.T., Mol. Pharmacol., 33 (1988) 713.

    Google Scholar 

  12. Hasobe M., McKee J.G., Borcherding D.R. and Borchardt R.T., Antimicrob. Agents Chemother., 31 (1987) 1849.

    Google Scholar 

  13. Birktoft J.J. and Banaszak L.J., In: Hearn M.T.W. (Ed.), Peptide and Protein Reviews, Vol. 4, Marcel Dekker, New York, 1984, pp. 1–46.

    Google Scholar 

  14. Brändén C. and Eklund H., In: Jeffery J. (Ed.), Dehydrogenase Requiring Nicotinamide Coenzyme, Birkhäuser Verlag, Basel, 1980, pp. 1–43.

    Google Scholar 

  15. Palmer J.L. and Abeles R.H., J. Biol. Chem., 254 (1979) 1217.

    Google Scholar 

  16. Kollman P., Annu. Rev. Phys. Chem., 38 (1987) 303.

    Google Scholar 

  17. Gund T. and Gund P., In: Liebman J.F. and Greenberg A. (Eds.), Molecular Structure and Energetics, VCH, New York, 1987, pp. 319–340.

    Google Scholar 

  18. Frühbeis H., Klein R. and Wallmeier H., Angew. Chem. Int. Ed. Engl., 26 (1987) 403.

    Google Scholar 

  19. Stewart D.E., Weiner P.K. and Wampler J.E., J. Mol. Graphics 5 (1987) 133.

    Google Scholar 

  20. Taylor S.S., J. Biol. Chem., 252 (1977) 1799.

    Google Scholar 

  21. Ogawa H., Gomi T., Mueckler M.M., Fujioka M., Backlund P.S., Aksamit R.R., Cantoni G.L., Proc. Natl. Acad. Sci. USA, 84 (1987) 719.

    Google Scholar 

  22. Kasir J., Aksamit R.R., Backlund P.S. and Cantoni G.L., Biochem. Biophys. Res. Commun., 153 (1988) 359.

    Google Scholar 

  23. Eventoff W., Rossmann M.G., Taylor S.S., Torff H., Meyer H., Keil W. and Kiltz H., Proc. Natl. Acad. Sci. USA, 74 (1977) 2677.

    Google Scholar 

  24. White J.L., Hackert M.L., Buehner M., Adams M.J., Ford G.C., Lentz P.J., Smiley I.E., Steindel S.J. and Rossmann M.G., J. Mol. Biol., 102 (1976) 759.

    Google Scholar 

  25. Bernstein F.C., Koetzle T.F., Williams G.J.B., Meyer E.F., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T. and Tasumi M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  26. Singh, U.C., Weiner, P.K., Caldwell, J. and Kollman, P.A., Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143.

  27. Vedani A. and Huhta D.W., J. Am. Chem. Soc., 112 (1990) 4759.

    Google Scholar 

  28. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S. and Karplus M., J. Comp. Chem., 4 (1983) 187.

    Google Scholar 

  29. Eklund H., Samama J.P., Wallén L., Brändén C.I., Åkeson Å. and Jones T.A., J. Mol. Biol., 146 (1981) 561.

    Google Scholar 

  30. Jones T.A., In: Sayre D. (Ed.), Computational Crystallography, Clarendon Press, Oxford, 1982, pp. 303–317.

    Google Scholar 

  31. Dewar M.J.S. and Thiel W., J. Am. Chem. Soc., 99 (1977) 4899.

    Google Scholar 

  32. Grau U.M., Trommer W.E. and Rossmann M.G., J. Mol. Biol., 151 (1981) 289.

    Google Scholar 

  33. Still, W.C., Richards, N.G.J., Guida, W.C., Lipton, M., Liskamp, R., Chang, G. and Hendrickson, T., Department of Chemistry, Columbia University, New York, NY 10027.

  34. Ishida T., Tanaka A., Inoue M., Fujiwara T. and Tomita K., J. Am. Chem. Soc., 104 (1982) 7239.

    Google Scholar 

  35. Hayashi M., Yaginuma S., Yoshioka H. and Nakatsu K., J. Antibiot., 34 (1981) 675.

    Google Scholar 

  36. Kishi T., Muroi M., Kusaka T., Nishikawa T., Kamiya K. and Mizuno K., Chem. Pharm. Bull., 20 (1972) 940.

    Google Scholar 

  37. Allen F.H., Bellard S., Brice M.D., Cartwright B.A., Doubleday A., Higgs H., Hummelink T., Hummelink-Peters B.G., Kennard O., Motherwell W.D.S., Rodgers J.R. and Watson D.G., Acta Crystallogr., B35 (1979) 2331.

    Google Scholar 

  38. Jacober, S.P., SOLVGEN: An Approach to Protein Hydration, M.S. Thesis, Department of Computer Science, University of Kansas, Lawrence, KS, 1988.

    Google Scholar 

  39. Vedani A., Huhta D. and Jacober S.P., J. Am. Chem. Soc., 111 (1989) 4075.

    Google Scholar 

  40. Gomi T., Ogawa H. and Fujioka M., J. Biol. Chem., 261 (1986) 13422.

    Google Scholar 

  41. Gomi T. and Fujioka M., Biochemistry, 22 (1983) 137.

    Google Scholar 

  42. Takata Y. and Fujioka M., J. Biol. Chem., 258 (1983) 7374.

    Google Scholar 

  43. Takata Y. and Fujioka M., Biochemistry, 23 (1984) 4357.

    Google Scholar 

  44. Takata Y., Gomi T. and Fujioka M., Arch. Biochem. Biophys., 240 (1985) 827.

    Google Scholar 

  45. Parthasarathy R. and Fridey S.M., Science, 226 (1984) 969.

    Google Scholar 

  46. Wierenga R.K. and Hol W.G.J., Nature (Lond.) 302 (1983) 842.

    Google Scholar 

  47. Wierenga R.K., Terpstra P. and Hol W.G.J., J. Mol. Biol., 187 (1986) 101.

    Google Scholar 

  48. Holbrook J.J., Lilijas A., Steindel S.J. and Rossmann M.G., In: Boyer P.D. (Ed.), The Enzymes, Vol. 11, Academic Press, New York, 1975, pp. 191–292.

    Google Scholar 

  49. Gomi T., Date T., Ogawa H., Fujioka M., Aksamit R.R., Backlund P.S. and Cantoni G.L., J. Biol. Chem., 264 (1989) 16138.

    Google Scholar 

  50. Sinhababu A.K., Bartel R.B., Pochopin N. and Borchardt R.T., J. Am. Chem. Soc., 107 (1985) 7628.

    Google Scholar 

  51. Bürgi H.B., Dunitz J.D., Lehn J.M. and Wipff G., Tetrahedron, 30 (1974) 1563.

    Google Scholar 

  52. Lai T.F. and Marsh R.E., Acta Crystallogr., B28 (1972) 1982.

    Google Scholar 

  53. Horjales E. and Brändén C., J. Biol. Chem., 260 (1985) 15445.

    Google Scholar 

  54. Paisiley S.D., Wolfe M.S. and Borchardt R.T., J. Med. Chem., 32 (1989) 1415.

    Google Scholar 

  55. McCammon J.A. and Harvey S.C., Dynamics of Protein and Nucleic Acids, Cambridge University Press, London, 1987.

    Google Scholar 

  56. Coulter-Karis D.E. and Hershfield M.S., Ann. Hum. Genet., 53 (1989) 169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, J.C., Borchardt, R.T. & Vedani, A. A molecular model for the active site of S-adenosyl-l-homocysteine hydrolase. J Computer-Aided Mol Des 5, 213–234 (1991). https://doi.org/10.1007/BF00124340

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124340

Key words

Navigation