Skip to main content
Log in

13C, 15N and 113Cd NMR and Molecular Orbital Studies of Novel Bile Acid N-(2-aminoethyl)amides and Their Cd2+-complexes

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Lithocholic acid N-(2-aminoethyl)amide (1) and deoxycholic acid N-(2-aminoethyl)amide(2) have been prepared and characterized by1H, 13C and 15N NMR. The accurate molecular masses of 1 and 2 have been determined by ESI MS. The formation of the Cd2+-complexes (1+Cd and 2+Cd) in CD3OD solution have been detected by 1H,13C, 15N and 113Cd NMR. The 13C NMR chemical shift assignments of 1 and 2 and their Cd2+-complexes are based on DEPT-135 and z-GS 1H,13C HMQC experiments as well as comparison with the assignments of the related structures. The 15N NMR chemical shiftassignments of the ligands and theirCd2+-complexes are based on z-GS1H,15N HMBC experiments. 13C NMR chemical shift differences between 1and its 1:1 Cd2+-complex based on ab initiocalculations at Hartree-Fock SCI-PCM level using3-21G(d) basis set are in agreement with theexperimental shift changes observed onCd2+-complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Davis: Chem. Soc. Rev. 22, 243 (1993).

    Google Scholar 

  2. A. P. Davis, R. P. Bonar-Law, and J. K. M. Sanders: 'Receptors based on cholic acid', in Y. Murakami (ed.), Comprehensive Supramolecular Chemistry, Vol. 4, Elsevier Science Ltd., Oxford, 1996, pp. 257-286; (b) M. Miyata and K. Sada: 'Deoxycholic acid and related hosts', in D. D. MacNicol, F., and R. Bishop (eds.), Comprehensive Supramolecular Chemistry, Vol. 6, Elsevier Science Ltd., Oxford, 1996, pp. 147-176.

    Google Scholar 

  3. S. Broderick, A. P. Davis, and R. P. Williams: Tetrahedron Lett. 39, 6083 (1998) and references cited therein.

    Google Scholar 

  4. P. P. Nair and D. Kritchevsky: 'Chemistry of the bile acids', in P. P. Nair and D. Kritchevsky (eds.), The Bile Acids: Chemistry, Physiology and Metabolism, Vol. 1, Chemistry, Plenum Press, London, 1971, p. 8.

    Google Scholar 

  5. P. Granger: in P. S. Pregosin (ed.), Groups 11 and 12, Copper toMercury in Studies in Inorganic Chemistry, Transition Metal Nuclear Magnetic Resonance, Elsevier, Amsterdam, 1991, p. 293.

    Google Scholar 

  6. E. Kolehmainen, J. Tamminen, R. Kauppinen, and J. Linnanto: J. Incl. Phenom. Mol. Recogn. Chem. 35, 75-84 (1999).

    Google Scholar 

  7. P. S. Pandey and R. B. Singh: Tetrahedron Lett. 38, 5045 (1997).

    Google Scholar 

  8. Arthur Vogel: Elementary Practical Organic Chemistry, Part I, Preparations, Third edition revised by B. V. Smith and N. M. Waldron, Longman, London and New York, 1980, p. 225.

    Google Scholar 

  9. (a) K. Lappalainen: Ph.D. Thesis, Research Report No. 62, University of Jyväskylä, Department of Chemistry, Finland (1997) and references cited therein; (b) E. Kolehmainen, J. Tamminen, K. Lappalainen, T. Torkkel, and R. Seppälä: Synthesis, 1082 (1996); (c) K. Lappalainen, E. Kolehmainen and J. Kotoneva: Magn. Reson. Chem. 34, 316 (1996).

  10. A. Bax, R. H. Griffey, and B. L. Hawkins: J. Magn. Reson. 55, 301 (1983).

    Google Scholar 

  11. A. Bax and S. Subramanian: J. Magn. Reson. 67, 565 (1986).

    Google Scholar 

  12. A. Bax and M. F. Summers: J. Am. Chem. Soc. 108, 2093 (1986).

    Google Scholar 

  13. M. Moini, B. L. Jones, R., M. Rogers and L. Jiang: J. Am. Mass. Spectrom. 9, 977 (1998).

    Google Scholar 

  14. J. J. P. Stewart: J. Comp. Chem. 10, 209 (1989).

    Google Scholar 

  15. SPARTAN, Version 5.0.2 (Wavefunction Inc., Irvine, CA, 1991-7).

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople: GAUSSIAN 94, Revision B.1, Gaussian Inc., Pittsburgh PA (1995).

    Google Scholar 

  17. A. F. Hofmann and D. M. Small: Ann. Rev. Med. 18, 333 (1967).

    Google Scholar 

  18. M. Munakata, S. Kitagawa, and F. Yagi: Inorg. Chem. 25, 964 (1986).

    Google Scholar 

  19. S. Berger, S. Braun, and H.-O. Kalinowski: NMR Spectroscopy of the Non-Metallic Elements, John Wiley & Sons, Chichester, 1997, p. 231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamminen, J., Kolehmainen, E., Linnanto, J. et al. 13C, 15N and 113Cd NMR and Molecular Orbital Studies of Novel Bile Acid N-(2-aminoethyl)amides and Their Cd2+-complexes. Journal of Inclusion Phenomena 37, 121–130 (2000). https://doi.org/10.1023/A:1008153126545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008153126545

Navigation