Skip to main content
Log in

Theoretical study of the defect distribution of trivalent cation impurities in MgO

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Atomistic simulation techniques have been used to calculate defect energies for a range of trivalent cation impurities in MgO single crystals. From these, values of the association energies have been estimated for impurity-vacancy aggregates ranging in size from simple impurityvacancy monomers, containing one impurity ion, to large clusters containing up to 24 impurity ions. For the MgO:Cr3+ system, these energies have been incorporated in a mass-action analysis and predictions made of the dependence of the equilibrium distribution of defects on temperature and on the nominal concentration of the dopant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. O. Henry, J. P. Larkin and G. F. Imbusch, Phys. Rev. B 13 (1976) 1893.

    Google Scholar 

  2. R. A. Weeks, J. Gastineau and E. Sonder, Phys. Status Solidi (a) 61 (1980) 265.

    Google Scholar 

  3. J. Corish, P. W. M. Jacobs and S. Radha-krishna, in “Surface and Defect Properties of Solids”, Vol. 6, edited by M. W. Roberts and J. M. Thomas, (The Chemical Society, London, 1977) Ch. 5.

    Google Scholar 

  4. B. J. Wuensch, “Mass Transport Phenomena in Ceramics”, edited by A. R. Cooper and A. H. Heuer, Materials Science Research, Vol. 9 (Plenum, New York, 1975) p. 211.

    Google Scholar 

  5. R. Freer, J. Mater. Sci. 15 (1980) 803.

    Google Scholar 

  6. D. R. Sempolinski and W. D. Kingery, J. Amer. Ceram. Soc. 63 (1980) 664.

    Google Scholar 

  7. C. R. A. Catlow, J. Corish, K. M. Diller, P. W. M. Jacobs and M. J. Norgett, J. Phys. C. 12 (1979) 451.

    Google Scholar 

  8. P. W. M. Jacobs, J. Corish and C. R. A. Catlow, ibid. 13 (1980) 1977.

    Google Scholar 

  9. J. Corish, C. R. A. Catlow, P. W. M. Jacobs and S. H. Ong, Phys. Rev. B 25 (1982) 6425.

    Google Scholar 

  10. P. J. Bendall, C. R. A. Catlow, J. Corish and P. W. M. Jacobs, J. Solid State Chem. 51 (1984) 159.

    Google Scholar 

  11. W. H. Gourdin and W. D. Kingery, J. Mater. Sci. 14 (1979) 2053.

    Google Scholar 

  12. E. A. Colbourn and W. C. MacKrodt, ibid. 17 (1982) 3021.

    Google Scholar 

  13. M. J. Norgett, UK AERE Harwell, Report R7650 (1974).

  14. C. R. A. Catlow and W. C. MacKrodt (eds), “Computer Simulation of Solids”, in “Lecture Notes in Physics”, Vol. 166 (Springer, Berlin, 1982).

    Google Scholar 

  15. C. R. A. Catlow, I. D. Faux and M. J. Norgett, J. Phys. C 9 (1976) 419.

    Google Scholar 

  16. W. C. MacKrodt and R. F. Stewart, ibid. 12 (1979) 431.

    Google Scholar 

  17. M. J. L. Sangster and A. M. Stoneham, Phil. Mag. B 43 (1981) 597.

    Google Scholar 

  18. G. V. Lewis, PhD thesis, University of London (1983).

  19. E. A. Colbourn, J. Kendrick and W. C. MacKrodt, ICI Corporate Laboratory Report CL-R/81/1637/A (1981).

  20. F. A. Kroger and H. J. Vink, Solid State Phys. 3 (1956) 307.

    Google Scholar 

  21. J. Corish, J. M. Quigley, P. W. M. Jacobs and C. R. A. Catlow, Phil. Mag. A 44 (1981) 13.

    Google Scholar 

  22. P. B. Fitzsimons and J. Corish, Phys. Status Solidi (a) 91 (1985) 543.

    Google Scholar 

  23. A. Brun and P. Dansas, Phys. Status Solidi (b) 66 (1974) 201.

    Google Scholar 

  24. J. C. G. Carroll, PhD thesis, University of Dublin (1985).

  25. C. R. A. Catlow and B. E. F. Fender, J. Phys. C 8 (1975) 3267.

    Google Scholar 

  26. N. L. Allen, W. C. MacKrodt and M. Leslie, Adv. Ceram. 23 (1987).

  27. G. Peckham, Proc. Phys. Soc. 90 (1967) 657.

    Google Scholar 

  28. G. V. Samsonov, “The Oxide Handbook”, 2nd Edn (IFI/Plenum, 1982) p. 120.

  29. C. R. A. Catlow, J. Corish, P. W. M. Jacobs and A. B. Lidiard, J. Phys. C 14 (1981) L121.

    Google Scholar 

  30. J. H. Harding, Physica 131B (1985) 13.

    Google Scholar 

  31. N. L. Allen and W. C. MacKrodt, unpublished results (1988).

  32. S. M. Tomlinson, C. R. A. Catlow and J. H. Harding, UK AERE Harwell, Report TP1095 (1984).

  33. A. M. Glass, J. Chem Phys. 46 (1967) 2080.

    Google Scholar 

  34. G. W. Weber, W. R. Bitler and V. S. Stubican, J. Phys. Chem. Solids 41 (1980) 1355.

    Google Scholar 

  35. J. C. G. Carroll, Sara M. McMurry, J. Corish and B. Henderson, J. Phys. C 18 (1985) 6409.

    Google Scholar 

  36. M. B. O Neill, PhD thesis, University of Strathclyde (1987).

  37. W. H. Gourdin, W. D. Kingery and J. Driear, J. Mater. Sci. 14 (1979) 2074.

    Google Scholar 

  38. T. A. Yager and W. D. Kingery, ibid. 16 (1981) 489.

    Google Scholar 

  39. C. Lebreton and L. W. Hobbs, Rad. Effects 74 (1983) 227.

    Google Scholar 

  40. G. A. Waychunas, J. Mater. Sci. 18 (1983) 195.

    Google Scholar 

  41. T. A. Yager and W. D. Kingery, ibid. 16 (1981) 483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, J.C.G., Corish, J., Henderson, B. et al. Theoretical study of the defect distribution of trivalent cation impurities in MgO. J Mater Sci 23, 2824–2836 (1988). https://doi.org/10.1007/BF00547457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547457

Keywords

Navigation