Skip to main content
Log in

Work of adhesion influence on the rheological properties of silica filled polymer composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As the work of adhesion, W a, increases between a silica filler surface and a polymer matrix, the dynamic viscosity and the shear modulus of the composite material increase. The logarithms of these properties decrease linearly as W a decreases. At lower dynamic test frequencies, a change in W a has a more dramatic impact on these properties than at higher frequencies. An “effective silica particle size” model can be used to explain why W a affects the viscosity and the shear modulus of a composite. According to that model, the thickness of the interphase layer increases as the W a increases. An increase in effective particle size decreases the “free” polymer volume, and the decrease free volume polymer causes both the viscosity and the shear modulus to increase. Increasing the dynamic test frequency releases some of the immobilized polymer from the filler surface which causes the effective particle size to decrease. As the effective particle size decreases because of the increased testing frequency and approaches the mean size of the original filler, the impact of the W a value on viscosity and shear modulus should decrease. However, the friction experienced between the filler interphase and the polymer, the so called “skin friction”, depends on the magnitude of W a and the more general term, bond energy density (BED). The skin friction determines the viscosity of the composite, particularly at lower frequencies. Higher W a values induce higher skin friction and thereby higher flow resistance (viscosity) as polymer chains move along the filler surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Shang, J. W. Williams and K-J. M. Söderholm J. Mater. Sci. 29 (1994) 2406.

    Article  CAS  Google Scholar 

  2. Idem, ibid. 27 (1992) 4949.

    CAS  Google Scholar 

  3. Idem, in preparation (1995).

  4. R. S. Chahal and L. E. St Pierre, Macromol. 1 (1968) 152.

    Article  CAS  Google Scholar 

  5. Idem, ibid. 2 (1969) 193.

    CAS  Google Scholar 

  6. K-J. M. Söderholm and S. W. Shang, J. Dent. Res. 72 (1993) 1050.

    Google Scholar 

  7. Y. Suetsugu and J. L. White, J. Appl. Polym. Sci. 28 (1983) 1481.

    Article  CAS  Google Scholar 

  8. D. M. Bigg, Polym. Eng. Sci. 23 (1983) 206.

    Article  CAS  Google Scholar 

  9. Idem, ibid. 22 (1982) 512.

    CAS  Google Scholar 

  10. C. D. Han, J. Appl. Polym. Sci. 18 (1974) 821.

    CAS  Google Scholar 

  11. H. Kambe and M. Takano, in “Proceedings of the Fourth International Congress on Rheology, Part 3”, edited by E. H. Lee (Interscience, New York, 1963) p. 557.

    Google Scholar 

  12. H. Tanaka and J. White, Polym. Eng. Sci. 20 (1980) 949.

    Article  CAS  Google Scholar 

  13. V. M. Lobe and J. White, ibid. 19 (1979) 617.

    Article  CAS  Google Scholar 

  14. J. M. White and W. Crowder, J. Appl. Polym. Sci. 18 (1974) 1013.

    CAS  Google Scholar 

  15. N. Minagawa and J. M. White, ibid. 16 (1976) 501.

    Google Scholar 

  16. H. L. Luo, C. D. Han and J. Mijovic, ibid. 28 (1983) 3387.

    Article  CAS  Google Scholar 

  17. C. D. Han, C. A. Villamizar and Y. W. Kim, ibid. 21 (1977) 353.

    Article  CAS  Google Scholar 

  18. C. D. Han, ibid. 15 (1971) 2567.

    CAS  Google Scholar 

  19. C. D. Han, T. C. Yu and K. U. Kim, ibid. 15 (1971) 1149.

    CAS  Google Scholar 

  20. K. W. Lem and C. D. Han, J. Rheology 27 (1983) 263.

    CAS  Google Scholar 

  21. C. D. Han, C. Sandford and H. J. Yoo, Polym. Eng. Sci. 18 (1978) 849.

    CAS  Google Scholar 

  22. C. D. Han, V. D. Weghe, P. Shete and J. R. Haw, ibid. 21 (1981) 196.

    CAS  Google Scholar 

  23. W. Stöber, A. Fink and E. Bohn, J. Colloid Interface Sci. 26 (1968) 62.

    Google Scholar 

  24. C. G. Tan, B. D. Bowen and N. Epstein, ibid. 118 (1987) 290.

    CAS  Google Scholar 

  25. R. N. Lamb and D. N. Furlong, J. Chem. Soc. Faraday Trans. 78 (1982) 61.

    CAS  Google Scholar 

  26. K. Tsutsumi and H. Takahashi, Colloid Polym. Sci. 263 (1985) 506.

    CAS  Google Scholar 

  27. F. M. Fowkes and M. A. Mostafa, Ind. Eng. Chem. Prod. Res. Dev. 17 (1978) 3.

    Article  CAS  Google Scholar 

  28. F. M. Fowkes, in “Physicochemical Aspects of Polymer Surface”, Vol. 2, edited by K. L. Mittal (Plenum, New York, 1983) p. 583.

    Google Scholar 

  29. Idem. in “Microscopic Aspects of Adhesion and Lubrication”, Vol. 7, edited by J. M. Georges (Elsevier, Amsterdam, 1982) p. 119.

    Google Scholar 

  30. Idem, in “Recent Advances in Adhesion”, edited by L. H. Lee (Gordon and Breach, London, 1973) p. 39.

    Google Scholar 

  31. Idem, J. Adhesion 4 (1972) 155.

    CAS  Google Scholar 

  32. F. M. Fowkes, D. C. Mc Carthy and D. O. Tischler, in “Molecular Characterization of Composite Interface”, edited by H. Ishida and G. Kumar (Plenum, New York, 1985) p. 401.

    Google Scholar 

  33. M. J. Marmo, M. A. Mostafa, H. Jinnal and F. M. Fowkes, Ind. Eng. Chem. Prod. Res. Dev. 15 (1976) 206.

    Article  CAS  Google Scholar 

  34. F. M. Fowkes, in “Surface and Interfacial Aspects of Biomedical Polymer”, Vol. 1, edited by J. D. Andrade (Plenum, New York, 1985) p. 337.

    Google Scholar 

  35. J. A. Manson, Pure & Appl. Chem. 57 (1985) 1667.

    CAS  Google Scholar 

  36. S. W. Shang, Adv in Polym. Technol. 12 (1993) 389.

    CAS  Google Scholar 

  37. L. A. Utracki and B. Fisa, Polym. Compos. 3 (1982) 193.

    CAS  Google Scholar 

  38. R. M. Schulken, R. H. Cox and L. A. Minnick, J. Appl. Polym. Sci. 25 (1980) 1341.

    Article  CAS  Google Scholar 

  39. L. E. Nielsen, in “Polymer Rheology” (Marcel Dekker, New York, 1977) p. 47.

    Google Scholar 

  40. A. S. Foust, L. A. Wenzel, C. W. Clump, L. Maus and L. B. Andersen, in “Principles of Operations” (Wiley, New York, 1980) p. 157.

    Google Scholar 

  41. R. B. Bird, W. E. Stewart and E. N. Lightfoot, in “Transport Phenomena” (Wiley, New York, 1960) p. 181.

    Google Scholar 

  42. D. T. Wasan, L. Gupta and M. K. Vora, AICHE J. 17 (1971) 1287.

    CAS  Google Scholar 

  43. O. Reynolds, Phil. Trans. Roy. Soc. Lond. A174(1883) 935.

    Google Scholar 

  44. P. C. Hiemenz, in “Polymer Chemistry” (Marcel Dekker, New York, 1984) p. 113.

    Google Scholar 

  45. F. Bueche, in “Physical Properties of Polymers” (Interscience, New York, 1962) p. 85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, S.W., Williams, J.W. & Söderholm, K.J.M. Work of adhesion influence on the rheological properties of silica filled polymer composites. JOURNAL OF MATERIALS SCIENCE 30, 4323–4334 (1995). https://doi.org/10.1007/BF00361512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00361512

Keywords

Navigation