Skip to main content
Log in

Studies of diamond films/crystals synthesized by oxyacetylene combustion flame technique

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-quality diamond films/crystals were synthesized using the oxyacetylene combustion flame technique at atmospheric pressure in a narrow acetylene-rich region. Three nozzle configurations, single-, tilted- and multi-nozzle, were used to explore possible ways to improve the uniformity of diamond films and to increase the deposition areas. It was found from the systematic investigation that the surface morphology and crystal structure of diamond films are strongly dependent on the processing parameters such as the gas mixture ratio, r, of acetylene to oxygen, substrate temperature, and nozzle configurations. The appearance of two-dimensional spiral steps on (1 1 0) diamond surfaces was observed, which have not previously been reported in the literature. This phenomenon is explained using the concept of surface reconstruction. The observed layered steps on (1 0 0), (1 1 0), and (1 1 1) diamond planes strongly suggest that under certain conditions the synthetic diamond crystals could grow with a layer mechanism on any major plane, at least in the case of films made using combustion flames. Experimental results from X-ray diffraction and Raman spectroscopy show the presence of compressive stress along the 〈1 0 0〉 direction in the diamond films. The films also have good optical transparency, indicating potential for optical coating applications. The hardness, growth rate, film uniformity, and deposition areas of diamond films are discussed. Advantages and limitations of these three flame-torch deposition techniques are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. ROY, Nature 325 (1987) 17.

    Article  Google Scholar 

  2. K. E. SPEAR, J. Am. Ceram. Soc. 72 (1989) 171.

    Article  CAS  Google Scholar 

  3. A. R. BADZIAN and R. C. DE VRIES, Mater. Res. Bull. 23 (1988) 385.

    Article  CAS  Google Scholar 

  4. J. C. ANGUS and C. C. HAYMAN, Science 241 (1988) 913.

    Article  CAS  Google Scholar 

  5. W. ZHU, B. R. STONER, B. E. WILLIAMS and J. T. GLASS, Proc. IEEE 79 (1991) 621.

    Article  CAS  Google Scholar 

  6. W. A. YARBROUGH and R. MESSIER, Science 247 (1990) 688.

    Article  CAS  Google Scholar 

  7. R. C. DEVRIES, Ann. Rev. Mater. Sci. 17 (1987) 161.

    Article  CAS  Google Scholar 

  8. M. MURAKAWA, S. TAKEUCHI and Y. HIROSE, Surf. Coat. Technol. 39/40 (1989) 235.

    Article  Google Scholar 

  9. M. A. CAPPELLI and P. H. PAUL, J. Appl. Phys. 67 (1990) 2597.

    Article  Google Scholar 

  10. Y. HIROSE, “Synthesis of diamond using combustion flame in the atmosphere”, Progr. and Abstracts of 1st International Conference on the New Diamond Science and Technology, Tokyo, Japan, October 1988, p. 38.

  11. K. OKADA, S. KOMATSU, S. MATSUMOTO and Y. MORIYASHI, J. Mater. Sci. 26 (1991) 3081.

    Article  CAS  Google Scholar 

  12. L. M. HANSSEN, W. A. CARRINGTON, J. E. BUTLER, and K. A. SNAIL, Mater. Lett. 7 (1988) 289.

    Article  CAS  Google Scholar 

  13. P. G. KOSKY and D. S. MCATEE, ibid. 8 (1989) 369.

    Article  CAS  Google Scholar 

  14. W. A. YARBROUGH, M. A. STEWART and J. A. COOPER Jr, Surf. Coat. Technol. 39/40 (1989) 241.

    Article  Google Scholar 

  15. G. JANSSEN, W. J. P. VAN ENCKEVORT, J. J. D. SCHAMINEE, W. VOLLENBERG, L. J. GILING and M. SEAL, J. Cryst. Growth 104 (1990) 752.

    Article  CAS  Google Scholar 

  16. K. V. RAVI and A. JOSHI, Appl. Phys. Lett. 58 (1991) 246.

    Article  CAS  Google Scholar 

  17. Y. TZENG, C. CUTSHAW, R. PHILLIPS, T. SRIVINYUNAN, A. IBRAHIM and B. H. LOO, ibid. 56 (1990) 134.

    Article  CAS  Google Scholar 

  18. J. A. VON WINDHEIM and J. T. GLASS, J. Mater. Res. 7 (1992) 2144.

    Article  Google Scholar 

  19. W. ZHU, B. H. TAN, J. AHN and H. S. TAN, Diamond Rel. Mater. in press.

  20. T. ABE, M. SUEMITSU, N. MIYAMOTO and N. SATO Appl. Phys. Lett. 59 (1991) 911.

    Article  CAS  Google Scholar 

  21. A. G. GAYDON and H. G. WOLFHARD, “Flames: Their Structure, Radiation and Temperature”, 3rd Edn (Chapman and Hall, London, 1970) p. 196.

    Google Scholar 

  22. Y. HIROSE and S. AMANUMA, J. Appl. Phys. 68 (1990) 6401.

    Article  CAS  Google Scholar 

  23. X. H. WANG, W. ZHU, J. VON WINDHEIM and J. T. GLASS, J. Cryst. Growth. in press.

  24. B. V. SPITSYN, L. L. BOUILOV and B. V. DERYAGIN, ibid. 52 (1981) 219.

    Article  CAS  Google Scholar 

  25. J. A. MUCHA, D. L. FLAMM and D. E. IBBOTSON, J. Appl. Phys. 65 (1989) 3448.

    Article  CAS  Google Scholar 

  26. Y. MATSUI, A. YUUKI, M. SAHARA, and Y. HIROSE, Jpn J. Appl. Phys. 28 (1989) 1719.

    Google Scholar 

  27. M. FRENKLACH and H. WANG, Phys. Rev. B 43 (1991) 1520.

    Article  CAS  Google Scholar 

  28. D. E. ROSNER and J. P. STRAKEY, J. Phys. Chem. 77 (1973) 690.

    Article  CAS  Google Scholar 

  29. W. ZHU, B. H. TAN, Z. YIN, J. AHN and H. S. TAN, in “Evolution of Surface and Thin Film Microstructure”, edited by H. A. ATWATER, E. CHASON, M. GRABOW and M. LAGALLY (Materials Research Society, Pittsburgh, 1993) pp. 711–4.

    Google Scholar 

  30. K. KOBASHI, K. NISHIMURA, Y. KAWATE and T. HORIUCHI, Phys. Rev. B 38 (1988) 4067.

    Article  CAS  Google Scholar 

  31. R. HAUBNER and B. LUX, J. Refract. Hard Metals 6 (1987) 210.

    CAS  Google Scholar 

  32. W. ZHU, A. R. BADZIAN and R. MESSIER, in “Diamond Optics III” edited by A. FELDMAN and S. HOLLY, (SPIE, Bellingham, Washington, 1990) pp. 187–201.

    Google Scholar 

  33. A. R. BADZIAN, T. BADZIAN, R. ROY, R. MESSIER and K. E. SPEAR, Mater. Res. Bull. 23 (1988) 531.

    Article  CAS  Google Scholar 

  34. G. H. M. MA, Y. HIROSE, S. AMAMUMA, M. MCCLURE, J. T. PRATER and J. T. GLASS, in “New Diamond Science and Technology”, edited by R. MESSIER, J. T. GLASS, J. E. BUTLER and R. ROY, (Materials Research Society, Pittsburgh, PA, 1991) pp. 587–92.

    Google Scholar 

  35. P. HARTMAN (Ed.), “Crystal Growth: An Introduction”, (North-Holland, Amsterdam, 1973), Ch. 14, pp. 367–402.

    Google Scholar 

  36. H. E. BOYER (Ed.), in “Hardness Testing”, edited from material compiled by the ASM Committee on Hardness Testing (ASM International, materials Park, OH, c1987) pp. 80–1.

    Google Scholar 

  37. G. M. PHARR and W. C. OLIVER, MRS Bull. 17 (7) (1992) 28.

    Article  Google Scholar 

  38. N. V. NOVIKOV, M. A. VORONKIN and S. B. DUB, in “New Diamond Science and Technology”, edited by R. MESSIER, J. T. GLASS, J. E. BUTLER and R. ROY (Materials Research Society, Pittsburgh, PA, 1991) pp. 779–83.

    Google Scholar 

  39. B. D. CULLITY, “Elements of X-ray Diffraction”, 2nd Edn (Addison-Wesley, Reading MA, 1978) pp. 447–78.

    Google Scholar 

  40. J. WAGNER, C. WILD, W. M. SEBERT and P. KOIDL, Appl. Phys. Lett. 61 (1992) 1284.

    Article  CAS  Google Scholar 

  41. Y. SATO, C. HATA, T. ANDO and M. KAMO, in “New Diamond Science and Technology”, edited by R. MESSIER, J. T. GLASS, J. E. BUTLER and R. ROY (Materials Research Society, Pittsburgh, PA, 1991) pp. 537–48.

    Google Scholar 

  42. R. E. SHRODER, R. J. NEMANICH and J. T. GLASS, Phys. Rev. B 41 (1990) 3738.

    Article  CAS  Google Scholar 

  43. W. ZHU, B. H. TAN, Z. YIN, J. AHN and H. S. TAN, Diamond Rel. Mater., submitted.

  44. M. H. GRIMSDITCH, E. ANASTASSAKIS, and M. CARDONA, Phys. Rev. B 18 (1978) 901.

    Article  CAS  Google Scholar 

  45. D. S. KNIGHT and W. B. WHITE, J. Mater. Res. 4 (1989) 385.

    Article  CAS  Google Scholar 

  46. L. H. ROBINS, E. N. FARABAUGH and A. FELDMAN, ibid. 5 (1990) 2456.

    Article  CAS  Google Scholar 

  47. R. J. NEMANICH, L. BERGMAN, Y. M. LEGRICE and R. E. SHRODER, in “New Diamond Science and Technology”, edited by R. MESSIER, J. T. GLASS, J. E. BUTLER, and R. ROY (Materials Research Society, Pittsburgh, PA, 1991) pp. 741–52.

    Google Scholar 

  48. M. YOSHIKAWA, G. KATAGIRI, H. ISHIDA and ISHITANI Appl. Phys. Lett. 55 (1989) 2608.

    Article  CAS  Google Scholar 

  49. J. AHN, F. H. TAN, H. S. TAN and W. ZHU, in “Novel Forms of Carbon”, edited by C. L. RENSCHLER, J. J. POUCH and D. M. COX (Materials Research Society, Pittsburgh, PA, 1992) pp. 356–61.

    Google Scholar 

  50. H. A. HOFF, C. J. CRAIGIE, E. DANTSKER and C. S. PANDE, Appl. Phys. Lett. 59 (1991) 1693.

    Article  CAS  Google Scholar 

  51. W. K. BURTON, N. CABRERA and F. C. FRANK, Phil Trans. R. Soc. Lond. 243 (1951) 299.

    Article  Google Scholar 

  52. J. P. HIRTH, “Theory of Dislocations” (McGraw-Hill, New York, 1968) pp. 353.

    Google Scholar 

  53. K. OKADA, S. KOMATSU, S. MATSUMOTO and Y. MORIYOSHI, J. Cryst. Growth 108 (1991) 416.

    Article  CAS  Google Scholar 

  54. L. J. GILING and V. J. P. VAN ENCKEVORT, Surf. Sci. 161 (1985) 567.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Tan, B.H., Ahn, J. et al. Studies of diamond films/crystals synthesized by oxyacetylene combustion flame technique. JOURNAL OF MATERIALS SCIENCE 30, 2130–2138 (1995). https://doi.org/10.1007/BF00353045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353045

Keywords

Navigation