Skip to main content
Log in

Effect of initial microstructure on high velocity and hypervelocity impact cratering and crater-related microstructures in thick copper targets: Part I Soda-lime glass projectiles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three uniquely different initial microstructure regimes were created in 2.5 cm thick copper targets: an as-received 98 μm grain size containing ∼1010 dislocations/cm2 (Vickers hardness of 0.89 GPa); an annealed 124 μm grain size containing ∼109 dislocations/cm2 (Vickers hardness of 0.69 GPa); and a 763 μm grain size containing ∼109 dislocations/cm2 (Vickers hardness of 0.67 GPa). Each of these target plates was impacted by 3.18 mm diameter soda-lime glass spheres at nominal impact velocities of 2, 4 and 6 km s-1. Grain size was observed to have only a very small or negligible contribution to cratering, while the dislocation density had a controlling influence on both the target hardness and the cratering process. Residual crater hardness profiles were correlated with specific microstructure zones extending from the crater wall into the target, and both hardness profiles and residual microstructures differed for each specific target, and for each different impact velocity. Microbands coincident with traces of {1 1 1} planes were associated with a zone of residual target hardening and increased with increasing grain size and impact velocity. No significant melt-related phenomena were observed, and crater-related target flow occurs by solid-state plastic flow through dynamic recrystallization, forming a narrow, softened zone at the crater wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. WHIPPLE, Astron. J. 52 (1947) 5.

    Article  Google Scholar 

  2. D. R. CHRISTMAN, AIAA J. 4 (1966) 1872.

    Article  Google Scholar 

  3. B. G. COUR-PALAIS, Int. J. Impact Eng. 5 (1987) 221.

    Article  Google Scholar 

  4. G. BIRKHOFF, D. P. McDOUGALL, E. M. PUGH and G. I. TAYLOR, J. Appl. Phys. 19 (1948) 563.

    Article  CAS  Google Scholar 

  5. R. J. EICHELBERGER, ibid. 27 (1956) 63.

    Article  Google Scholar 

  6. A. TATE, J. Mech. Phys. Solids 15 (1967) 387.

    Article  Google Scholar 

  7. M. A. MEYERS, “Dynamic Behavior of Materials” (J. Wiley & Sons, New York, 1994).

    Google Scholar 

  8. A. WATTS, D. ATKINSON and S. RIECO, “Dimensional Scaling for Impact Cratering and Perforation”, NASA Contractor Report NCR-188259, 16 March 1993 (POD Associates, 2309 Renard Place, S. E., Suite 201, Albuquerque, NM 87106).

    Google Scholar 

  9. A. C. CHARTERS and J. L. SUMMERS, US Naval Ordinance Laboratory Report NORL-1238, 1959, p. 200.

  10. C. J. HAYHURST, H. J. RANSON, D. J. GARDNER and N. K. BIRNBAUM, Int. J. Impact Eng. 17 (1995) 375.

    Article  Google Scholar 

  11. M. A. MEYERS and K. K. CHAWLA, “Mechanical Metallurgy: Principles and Applications”, (Prentice-Hall, Englewood Cliffs, New Jersey, 1984).

    Google Scholar 

  12. R. K. HAM, Phil. Mag. 6 (1961) 1183.

    Google Scholar 

  13. L. E. MURR, “Electron and Ion Microscopy and Microanalysis “, 2nd Edn (Marcel Dekker, Inc., New York, 1991).

    Google Scholar 

  14. S. A. QUINONES, J. M. RIVAS and L. E. MURR, J. Mater. Sci.Lett. 14 (1995) 685.

    Article  CAS  Google Scholar 

  15. S. A. QUINONES, J. M. RIVAS, E. P. GARCIA, L. E. MURR, F. HÖRZ and R. BERNHARD, in “Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena”, edited by L. E. Murr, K. P. Staudhammer, and M. A. Meyers (Elsevier Scence B. V., Amsterdam, The Netherlands, 1995) Ch. 36, p. 293.

    Google Scholar 

  16. J. M. RIVAS, S. A. QUINONES and L. E. MURR, Hypervelocity impact cratering: microstructural characterization. Scripta Metall. Mater. 32 (1995) 101.

    Article  Google Scholar 

  17. L. E. MURR, J. M. RIVAS, E. FERREYRA T. and J. C. SANCHEZ, “Microstructural Sciences”, vol. 24 (1997) (in press).

  18. L. E. MURR, E. P. GARCIA, E. FERREYRA T., C.-S. NIOU, J. M. RIVAS and S. A. QUINONES, J. Mater. Sci. 31 (1996) 5915.

    Article  CAS  Google Scholar 

  19. A. H. CHOKSHI and M. A. MEYERS, The prospects for superplasticity at high strain rates: preliminary considerations and an example. Scripta Metall. Mater. 24 (1990) 605.

    Article  CAS  Google Scholar 

  20. L. E. MURR, H. K. SHIH and C.-S. NIOU, Mater. Characterization, 33 (1994) 65.

    Article  Google Scholar 

  21. J. C. SANCHEZ, K. P. STAUDHAMMER and L.E. MURR, in “Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena”, edited L. E. Murr, K. P. Staudhammer, and M. A. Meyers (Elsevier Science B. V., Amsterdam, 1995) Ch. 93, p. 801.

    Google Scholar 

  22. L. E. MURR, in “Shock Wave and High-Strain-Rate Phenomena in Metals,” edited by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981) Ch. 37, p. 607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FERREYRA T, E., MURR, L.E., GARCIA, E.P. et al. Effect of initial microstructure on high velocity and hypervelocity impact cratering and crater-related microstructures in thick copper targets: Part I Soda-lime glass projectiles. Journal of Materials Science 32, 2573–2585 (1997). https://doi.org/10.1023/A:1018646916872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018646916872

Keywords

Navigation