Skip to main content
Log in

Functionally gradient ceramic/metallic coatings for gas turbine components by high-energy beams for high-temperature applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Failure of turbine blades generally results from high-temperature oxidation, corrosion, erosion, or combinations of these procedures at the tip, and the leading and trailing edges of a turbine blade. To overcome these limitations, functionally gradient ceramic/metallic coatings have been produced by high-energy beams for high-temperature applications in the aerospace and turbine industries to increase the life of turbine components. Thermal spray processes have long been used to apply high-temperature thermal barrier coatings to improve the life of turbine components. However, these processes have not met the increased demand by the aerospace and turbine industries to obtain higher engine temperatures and increased life enhancement as a result of the inhomogeneous microstructure, unmelted particles, voids, and poor bonding with the substrate. High-energy beams, i.e. electron beam-physical vapour deposition (EB-PVD), laser glazing, laser surface alloying, and laser surface cladding, have been explored to enhance the life of turbine components and overcome the limitations of the thermal spray processes. EB-PVD has overcome some of the disadvantages of the thermal spray processes and has increased the life of turbine components by a factor of two as a result of the columnar microstructure in the thermal barrier coating (TBC). Laser glazing has been used to produce metastable phases, amorphous material, and a fine-grained microstructure, resulting in improved surface properties such as fatigue, wear, and corrosion resistance at elevated temperatures without changing the composition of the surface material. Laser surface alloying and laser surface cladding have shown promising results in improving the chemical, physical, and mechanical properties of the substrate's surface. Metal-matrix composite coatings have also been produced by a laser technique which resulted in increased wear and oxidation-resistant properties. The advantages and disadvantages of thermal spray processes, EB-PVD, laser glazing, laser surface alloying, and laser surface cladding will be discussed. Microstructural evolution of thermal barrier coatings, recent advancements in functionally gradient coatings, laser grooving, and multilayered textured coatings will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Vincenzini, Ind. Ceram. 10 (3) (1990) 113.

    Google Scholar 

  2. T. Yonusiionis, R. Stafford, T. Ahmed, L. D. Favro, P. K. Kuo and R. Thomas, Am. Ceram. Soc. Bull. 71 (1992) 1191.

    Google Scholar 

  3. H. Herman, Sci. Am. 256 (9) (1988) 112.

    Google Scholar 

  4. R. W. Smith and R. Knights, J. Metals 8 (1995) 32.

    Google Scholar 

  5. R. Miller, J. Eng. Gas Turbines Power 111 (1989) 301.

    Google Scholar 

  6. D. Wolfe and J. Singh, “Proceedings of 1995 International Electron Beam Conference” edited by R. Bakish, Bakish Materials Corporation, Englewood, New Jersey (1995) pp. 135-146.

    Google Scholar 

  7. D. Wolfe, M. B. Movchan and J. Singh, “Advances in Coatings Technologies for Surface Engineering, ” edited by C. R. Clayton, J. K. Hirvonen, and A. R. Srivatsa, The Minerals, Metals & Materials Society, Warrendale, Pa (1997) pp. 93–110.

    Google Scholar 

  8. S. Appiano and P. Vincenzini, J. Mater. Synth. Process. 1 (1) (1993) 17.

    Google Scholar 

  9. S. Stecura, Ceram. Bull. 61 (2) (1982) 256.

    Google Scholar 

  10. M. Foujanet, J. Lumet, J. Derep and F. Nardou, in “Zirconia'88-Advances in Zirconia Science and Technology”, edited by S. Meriani (Elsevier Applied Science, New York, 1988) pp. 89–98.

    Google Scholar 

  11. G. Ingo, E. Paparazzo, O. Bagnarelli and N. Zacchetti, Surface Interface Anal. 16 (1990) 515.

    Google Scholar 

  12. R. Bunshah, “Handbook of Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge (1994).

    Google Scholar 

  13. J. Singh, J. Mater. Sci. 29 (1994) 5232.

    Google Scholar 

  14. Idem, J. Metals 9 (1992) 8.

    Google Scholar 

  15. J. Singh, B. N. Bhat, R. Poorman, A. Kar, and J. Mazumder, Surfaces Coat. Technol. 79 (1996) 35.

    Google Scholar 

  16. J. Singh and J. Mazumder, Acta Metall. 35 (1987) 1987.

    Google Scholar 

  17. J. Singh, K. Naganathan and J. Mazumder, High Temp. Technol. 5 (3) (1987) 131.

    Google Scholar 

  18. J. Singh and J. Mazumder, Metall. Trans. 8 (1988) 1588.

    Google Scholar 

  19. C. Lynch (ed.), “Practical Handbook of Materials Science”, (CRC Press, Boston, 1989).

    Google Scholar 

  20. W. Kingery, H. Bowen and D. Uhlmann, “Introduction to Ceramics, ” John Wiley & Sons, New York, New York, 1976.

    Google Scholar 

  21. S. Meier, D. K. Gupta, and K. D. Sheffler, J. Metals, 43 (3) (1991) 51.

    Google Scholar 

  22. D. Lide (ed.), “Handbook of Chemistry and Physics”, 71st Edn, (CRC Press, Boston, 1990).

    Google Scholar 

  23. S. Schneider, J. Davis, G. Davidson, S. Lampman, M. Woods, T. Zorc and R. Uhl, “Engineered Materials Handbook-Ceramics and Glasses”, Vol. 4 (ASM International), Metals Park, Ohio (1991) pp. 30, 316.

    Google Scholar 

  24. J. Shackelfore and W. Alexander, “The CRC Materials Science and Engineering Handbook” (CRC Press, Boca Raton) 1994.

    Google Scholar 

  25. M. Hocking, V. Vasantasree, and P. S. Sidk, “Metallic and Ceramic Coatings”, Longman Scientific and Technical, John Wiley & Sons Inc., New York, New York, 1989.

    Google Scholar 

  26. P. Fauchais, Mater. Sci. Monogr. 67 (1991) 3.

    Google Scholar 

  27. P. Gilman, J. Metals 45 (1993) 41.

    Google Scholar 

  28. C. Berndt, Thin Solid Films 119 (1984) 173.

    Google Scholar 

  29. S. Stecura, “Improved Metallic and Thermal-Barrier Coatings”, NASA Tech Briefs 5 (1980) 321.

    Google Scholar 

  30. N. Shankar, H. Herman, S. Singhal and C. Berndt, Thin Solid Films 119 (1984) 159.

    Google Scholar 

  31. P. Vincenzini, Ind. Ceram. 10 (3) (1990) 113.

    Google Scholar 

  32. P. Harmsworth and R. Stevens, J. Mater. Sci. 27 (1992) 611.

    Google Scholar 

  33. Idem, ibid. 27 (1992) 616.

  34. Idem, ibid. 26 (1991) 3991.

  35. L. Lelait, T. S. Alperine, C. Diot and M. Mevrel, Mater. Sci. Eng. A121 (1989) 475.

    Google Scholar 

  36. O. Unal, T. Mitchell and A. Heuer, J. Am. ceram. Soc. 77 (1994) 984.

    Google Scholar 

  37. B. Wu, C. Chao, E. Chang and T. Chang, Mater. Sci. Eng. A124 (1990) 215.

    Google Scholar 

  38. B. Wu, E. Chang, S. Chang and D. Tu, J. Am. Ceram. Soc. 72 (2) (1989) 212.

    Google Scholar 

  39. G. McDonald and C. Hendricks, Thin Solid Films 73 (1980) 491.

    Google Scholar 

  40. G. Kleer, R. Schonholz, W. Doll, S. Sturlese, and N. Zacchetti, in “High Performance Ceramic Films and Coatings”, edited by P. Vincenzini (Elsevier Science, B.V.), New York, New York (1991) 329–328.

    Google Scholar 

  41. E. Y. Lee, R. R. Biederman and R. D. Sisson, Jr., ibid., (1991) pp. 292–8.

  42. D. J. Wortman, E. C. Duderstadt and W. A. Nelson, J. Eng. Gas Turbines Power 112 (1990) 527–530.

    Google Scholar 

  43. M. Gell, J. Metals 46 (10) (1994) 30.

    Google Scholar 

  44. C. Aita, C. Scanlan and M. Gajdardziskajosifovska, ibid. 46 (1994) 40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, D., Singh, J. Functionally gradient ceramic/metallic coatings for gas turbine components by high-energy beams for high-temperature applications. Journal of Materials Science 33, 3677–3692 (1998). https://doi.org/10.1023/A:1004675900887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004675900887

Keywords

Navigation