Skip to main content
Log in

Dielectric response and a.c. conductivity of synthetic dopa-melanin polymer

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric spectra of dopa-melanin have been examined over the wide frequency range 100 Hz–1000 MHz at room temperature. Synthetic dopa-melanin was obtained by oxidative polymerization of L-3,4-dihydroxyphenylalanine. The purpose of the present study was to characterize polarization effects, the electrical conduction mechanism and structural arrangement of the units taking part in these processes as a basis for future biological applications. Real and imaginary components of the dielectric permittivity show an anomalous low-frequency dispersion. Values of the power-law exponents were interpreted in terms of the cluster model of potentially mobile charges and the structural arrangement of molecular units in melanin. The fractal circuit model (self-similar branched porous electrode system) was found to be equivalent to the cluster model in the description of the dielectric response in melanin. It has been shown that relations between cluster model parameters p and n, and fractal dimensionalities of melanin, are fulfilled very well. The presented results support the earlier findings based on d.c. conductivity measurements, that charge hopping is the main conduction mechanism, which contributes to the dielectric polarization in the low-frequency region. Dielectric spectra at frequencies above 10MHz show small β-relaxation features due to molecular polar segments and water molecules bound to melanin. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Riley, Pigment Cell Res. 5 (1992) 101.

    PubMed  Google Scholar 

  2. G. Albanese, M. G. Bridelli and A. Deriu, Biopolymers 23 (1984) 1481.

    Google Scholar 

  3. P. R. Crippa, F. Martini and C. Viappiani, J. Photochem. Photobiol. B Biol. 11 (1991) 371.

    Google Scholar 

  4. R. C. Sealy, C. C. Felix, J. S. Hyde and H. M. Swartz, in “Free Radicals in Biology”, edited by W. A. Pryor (Academic Press, New York, 1980) p. 210.

    Google Scholar 

  5. T. V. Chirila, D. E. Thompson and I. J. Constable, J. Biomater. Sci. Polym. Ed. 3 (1992) 481.

  6. R. F. Williams, R. L. Siegle, B. L. Pierce and J. Floyd, Invest. Radiol. 29 (1994) S116.

    PubMed  Google Scholar 

  7. P. R. Crippa, V. Cristofoletti and N. Romeo, Biochem. Biophys. Acta 538 (1978) 164.

    PubMed  Google Scholar 

  8. J. E. McGinness, P. Corry and P. Proctor, Science 183 (1974) 853.

    PubMed  Google Scholar 

  9. M. M. Jastrzebska, H. Isotalo, J. Paloheimo, H. Stubb and B. Pilawa, J. Biomater. Sci. Polym. Ed. 7 (1996) 781.

  10. M.M. Jastrzebska, H. Isotalo, J. Paloheimo and H. Stubb, ibid. 7 (1995) 577.

    Google Scholar 

  11. V. Horak and G. Weeks, Bioorg. Chem. 21 (1993) 24.

    Google Scholar 

  12. J. Y. Wong, R. Langer and D. E. Ingber, Proc. Nat. Acad. Sci. USA 91 (1994) 3201.

    PubMed  Google Scholar 

  13. R. Seraglia, P. Traldi, G. Elli, A. Bertazzo, C. Costa and G. Allegri, Biol. Mass Spectrom. 22 (1993) 687.

    PubMed  Google Scholar 

  14. M. HervÉ, J. Hirschinger, P. Granger, P. Gilard, A. Deflandre and N. Goetz, Biochim. Biophys. Acta 1204 (1994) 19.

    PubMed  Google Scholar 

  15. J. Cheng, S. C. Moss and M. Eisner, Pigment Cell Res. 7 (1994) 255.

    PubMed  Google Scholar 

  16. Idem, ibid. 7 (1994) 263.

  17. G. W. Zajac, J. M. Gallas, J. Cheng, M. Eisner, S. C. Moss and A. E. Alvarado-Swaisgood, Biochim. Biophys. Acta 1199 (1994) 271.

    PubMed  Google Scholar 

  18. M. M. Jastrzebska and T. Wilczok, Stud. Biophys. 122 (1987) 39.

    Google Scholar 

  19. D. S. Kirkpatrick, J. E. McGinness, W. D. Moorhead, P. M. Corry and P. H. Proctor, Pigment Cell 4 (1979) 257.

    Google Scholar 

  20. L. A. Dissado and R. M. Hill, J. Chem. Soc. Faraday Trans II 80 (1984) 291.

    Google Scholar 

  21. A. K. Jonscher, Philos Mag. B 38 (1978) 587.

    Google Scholar 

  22. A. K. Jonscher, F. Meca and H. M. Millany, J. Phys C Solid State Phys. 12 (1979) L293.

    Google Scholar 

  23. D. Q. M. Craig, R. M. Hill and J. M. Newton, J. Mater. Sci. 28 (1993) 1978.

    Google Scholar 

  24. G. A. Niklasson and L. A. Serbinov, ibid. 23 (1988) 2601.

    Google Scholar 

  25. J. S. Huang and J. Sung, J. Chem. Phys. 90(1) (1989) 25.

    Google Scholar 

  26. L. A. Dissado and R. M. Hill, J. Appl. Phys. 66(6) (1989) 2511.

    Google Scholar 

  27. N. F. Mott and E. A. Davis, “Electronic processes in non-crystallinematerials” (Clarendon Press, Oxford, 1979) p. 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Jastrzebska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jastrzebska, M.M., Jussila, S. & Isotalo, H. Dielectric response and a.c. conductivity of synthetic dopa-melanin polymer. Journal of Materials Science 33, 4023–4028 (1998). https://doi.org/10.1023/A:1004449631857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004449631857

Keywords

Navigation