Skip to main content
Log in

Correlation of stepwise fatigue and creep slow crack growth in high density polyethylene

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of slow crack growth in fatigue and creep of high density polyethylene were studied. The relationship between fatigue and creep was examined by varying the R-ratio (the minimum/maximum loads in the fatigue loading cycle) in the tensile mode such that loading ranged from mainly dynamic (R = 0.1) to static (R = 1.0, creep test). The stepwise crack propagation mechanism characteristic of long-term failures in polyethylene was observed for all loading conditions studied. Fatigue fracture kinetics allowed for extrapolation to the case of creep failure, which suggested that short-term fatigue testing can be used to predict long-term creep fracture properties. The size of the craze damage zone ahead of the arrested crack tip was controlled only by the mean stress, however the lifetime of the zone was determined by both the maximum stress and the mean stress. Crack growth rate was related to the maximum stress and the mean stress by a power law relationship, which described crack growth over the entire range of loading conditions studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Brown and X. Lu, in Proceedings of the 12th Plastic Fuel Gas Pipe Symposium, Boston, MA, 1991, p. 128.

    Google Scholar 

  2. A. Shah, E. V. Stepanov, G. Capaccio, A. Hiltner and E. Baer, J. Polym. Sci: Part B: Polym. Phys. 36(1998) 2355.

    Google Scholar 

  3. A. Shah, E. V. Stepanov, M. Klein, A. Hiltner and E. Baer, J. Mater. Sci. 33(1998) 3313.

    Google Scholar 

  4. Idem., in 1997 Symposium on Plastic Piping Systems for Gas Distribution, Orlando, FL, 1997, p. 235.

    Google Scholar 

  5. A. Shah, E. V. Stepanov, A. Hiltner, E. Baer and M. Klein, Int. J. Fracture 84(1997) 159.

    Google Scholar 

  6. A. Shah, E. V. Stepanov, A. Hiltner, E. Baer and A. Moet, in SPE Conference Proceedings/54th ANTEC'96, Vol. 3, Indianapolis, IN, 1996, p. 3289.

    Google Scholar 

  7. R. W. Hertzberg and J. A. Manson, "Fatigue of Engineering Plastics" (Academic Press, New York, 1980).

    Google Scholar 

  8. J. A. Sauer and M. Hara, "Advances in Polymer Science," Vol. 91/92 (Springer-Verlag, Berlin, 1990) p. 69.

    Google Scholar 

  9. J. C. Radon, Int. J. Fracture 16(1980) 533.

    Google Scholar 

  10. C. B. Bucknall and P. Dumpleton, Polym. Eng. Sci. 25(1985) 313.

    Google Scholar 

  11. Y. Zhou and N. Brown, ibid. 33(1993) 1421.

    Google Scholar 

  12. M. D. Skibo, R. W. Hertzberg, J. A. Manson and S. L. Kim, J. Mater. Sci. 12(1977) 531.

    Google Scholar 

  13. S. Arad, J. C. Radon and L. E. Culver, J. Mech. Eng. Sci. 13(1971) 75.

    Google Scholar 

  14. B. Mukherjee and D. J. Burns, Experimental Mechanics 11(1971) 433.

    Google Scholar 

  15. S. A. Sutton, Eng. Fract. Mech. 6(1974) 587.

    Google Scholar 

  16. Y. M. Mai and J. G. Williams, J. Mater. Sci. 14(1979) 1933.

    Google Scholar 

  17. N. J. Mills and N. Walker, Polymer 17(1976) 335.

    Google Scholar 

  18. J. A. Manson and R. W. Hertzberg, CRC Crit. Rev. Macromol. Sci. 1(1973) 433.

    Google Scholar 

  19. K. Yamada and M. Suzuki, Kobunshi Kagaku 30(1973) 206.

    Google Scholar 

  20. Y. Q. Zhou and N. Brown, J. Mater. Sci. 24(1989) 1458.

    Google Scholar 

  21. Idem., J. Polym. Sci: Part B: Polym. Phys. 30(1992) 477.

    Google Scholar 

  22. F. Van der Grinten and P. W. M. Wichers schreur, Plast. Rub. Composites Proc. Appl. 25(1996) 294.

    Google Scholar 

  23. Y. Zhou, X. Lu and N. Brown, Polym. Eng. Sci. 31(1991) 711.

    Google Scholar 

  24. H. Nishimura, A. Nakashiba, M. Nakakura and K. Sasai, ibid. 33(1993) 895.

    Google Scholar 

  25. E. Showaib and A. Moet, J. Mater. Sci. 28(1993) 3617.

    Google Scholar 

  26. X. Lu, R. Qian and N. Brown, ibid. 26(1991) 881.

    Google Scholar 

  27. L. Konczol, M. G. Schinker and W. Doll, ibid. 19(1984) 1605.

    Google Scholar 

  28. D. S. Dugdale, J. Mech. Phys. Solids 8(1960) 100.

    Google Scholar 

  29. J. R. Rice, in "Fracture," Vol. 2, edited by H. Liebowitz (Academic Press, New York, 1968) p. 191.

    Google Scholar 

  30. N. Brown and X. Lu, Polymer 36(1995) 543.

    Google Scholar 

  31. Idem., Int. J. Fracture 69(1995) 371.

    Google Scholar 

  32. P. A. O'connell, M. J. Bonner, R. A. Duckett and I. M. Ward, Polymer 36(1995) 2355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsons, M., Stepanov, E.V., Hiltner, A. et al. Correlation of stepwise fatigue and creep slow crack growth in high density polyethylene. Journal of Materials Science 34, 3315–3326 (1999). https://doi.org/10.1023/A:1004616728535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004616728535

Keywords

Navigation