Skip to main content
Log in

Predictive modelling of the properties and toughness of polymeric materials Part II Effect of microstructural properties on the macroscopic response of rubber-modified polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of microstructural properties on the macroscopic mechanical behaviour has been studied by finite element predictions of the response of different microstructures of polystyrene (PS) or polycarbonate (PC) containing voids or rubbery particles, subjected to unidirectional extension. The voids represent a low-modulus non-adhering dispersed phase. The rubbery inclusions, which are assumed to be pre-cavitated and perfectly adhering, idealise core-shell particles with a hard rubber shell and a soft non-adhering or pre-cavitated core. The predictions show that the inclusion properties strongly affect the averaged post-yield response of the heterogeneous systems. Especially the post-yield strain softening can be eliminated by the introduction of voids in PC or rubbery particles in PS. Since macroscopic strain softening is believed to be the main cause of catastrophical stress or strain localisations, the softening elimination is believed to be primarily responsible for toughness enhancement of the polystyrene or polycarbonate systems. The results and experiences are extrapolated in order to explain the influence of the absolute length scale of a sub-micron sized morphology on the macroscopic behaviour, especially toughness. Two potential sources of particle-size effects are presented that may result in a stabilised, and thus tougher, macroscopic mechanical response, i.e. the yield stress reduction near a surface or interface because of a locally enhanced mobility of the polymer segments, and the temporary excessive hardening because of a sufficiently small size of the yield zones which results in a reduced effective entanglement distance. The paper concludes with a discussion on the extension of this knowledge to all other, for the moment amorphous, polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Yee, J. Mater. Sci. 12 (1977) 757.

    Google Scholar 

  2. F. J. Guild and R. J. Young, ibid. 24 (1989) 2454.

    Google Scholar 

  3. I. Narisawa, T. Kuriyama and O. Kennichiro, Makromol. Chem., Macromol. Symp. 41(1991) 87.

    Google Scholar 

  4. C. Cheng, N. Peduto, A. Hiltner, E. Baer, P. R Soskey and S. G. Mylonakis, J. Appl. Polym. Sci. 53 (1994) 513.

    Google Scholar 

  5. A. J. Kinloch and F. J. Guild, in “Toughened Plastics II: Novel Approaches in Science and Engineering,” edited by C. K. Riew and A. J. Kinloch (American Chemical Society, 1996). Advances in Chemistry Series, Vol. 252.

  6. C. J. G. Plummer, PH. B ´Eguelin and H.-H. Kausch, Polymer 37 (1996) 7.

    Google Scholar 

  7. R. A. Pearson and A. F. Yee, J. Mater. Sci. 26 (1991) 3838.

    Google Scholar 

  8. A. F. Yee idem., ibid. 21 (1986) 2475.

    Google Scholar 

  9. A. M. L. MagalhÃes and R. J. M. Borggreve, Macromolecules 28 (1995) 5841.

    Google Scholar 

  10. M. C. M. Van der sanden, J. M. M. Kok and H. E. H. Meijer, Polymer 35 (1994) 2995.

    Google Scholar 

  11. B. J. P. Jansen, S. Rastogi, H. E. H. Meijer and P. J. Lemstra, Macromolecules, submitted.

  12. S. Rastogi, H. E. H. Meijer and P. J. Lemstra Idem., ibid. 32 (1999) 6283.

    Google Scholar 

  13. B. J. P. Jansen, PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1998.

  14. C. B. Bucknall, A. Karpodinis and X. C. Zhang, J. Mater. Sci. 29 (1994) 3377.

    Google Scholar 

  15. A. N. Gent and P. B. Lindley, Proc. Roy. Soc. 249a (1958) 195.

    Google Scholar 

  16. C. E. Schwier, A. S. Argon and R. E. Cohen, Polymer 26 (1985) 1985.

    Google Scholar 

  17. R. A. Pearson and R. Bagheri, J. Mater. Sci. 31 (1996) 3945.

    Google Scholar 

  18. M. C. M. Van der sanden, L. G. C. Buijs, F. O. De bie and H. E. H. Meijer, Polymer 35 (1994) 2783.

    Google Scholar 

  19. R. J. M. Smit, W. A. M. Brekelmans and H. E. H. Meijer, J. Mater. Sci. 35 (2000) 2855.

    Google Scholar 

  20. W. A. M. Brekelmans and H. E. H. Meijer Idem., J. Mech. Phys. Solids 47 (1999) 201.

    Google Scholar 

  21. W. A. M. Brekelmans and H. E. H. Meijer Idem., in Proceedings of the 11th Int. Conf. on Composite Materials, Vol. V, Textile Composites and Characterisation, Gold Coast, Queensland, Australia, July 1997 (Australian Composite Structures Society, Melbourne) p. V585.

    Google Scholar 

  22. R. Hill, J. Mech. Phys. Solids 11 (1963) 357.

    Google Scholar 

  23. A. Bensoussan, J. L. Lions and G. Papanicolaou, “Asymptotic Analysis for Periodic Structures” (North-Holland, Amsterdam, 1978).

    Google Scholar 

  24. P. M. Suquet, in “Plasticity Today: Modelling, Methods and Applications, AMD-Vol. 212/MD-Vol. 62,” edited by A. Sawczuk and G. Bianchi (Elsevier Science Publishers, London, 1985) p. 279.

    Google Scholar 

  25. R. J. M. Smit, W. A. M. Brekelmans and H. E. H. Meijer, Comput. Methods Appl. Mech. Engrg. 155 (1998) 181.

    Google Scholar 

  26. K. Dijkstra and R. J. Gaymans, J. Mater. Sci. 29 (1994) 3231.

    Google Scholar 

  27. C. Cheng, A. Hiltner, E. Baer, P. R. Soskey and S. G. Mylonakis, J. Appl. Polym. Sci. 55 (1995) 1691.

    Google Scholar 

  28. M. C. Boyce, D. M. Parks and A. S. Argon, Mechanics of Materials 7 (1988) 15.

    Google Scholar 

  29. E. M. Arruda, M. C. Boyce and H. Quintus-bosz, Int. J. Plasticity 9 (1993) 783.

    Google Scholar 

  30. M. C. M. Van der sanden, H. E. H. Meijer and P. J. Lemstra, Polymer 34 (1993) 2148.

    Google Scholar 

  31. J. L. Keddie, R. A. L. Jones and R. A. Cory, Europhys. Lett. 27 (1994) 59.

    Google Scholar 

  32. T. A. Tervoort, E. T. J. Klompen and L. E. Govaert, J. Rheol. 40 (1996) 779.

    Google Scholar 

  33. E. J. Kramer, in “Adv. in Polymer Sci., Vol. 52/53,” edited by H. H. Kausch (Springer-Verlag, Berlin, 1983) Ch. 1.

    Google Scholar 

  34. O. A. Hasan, M. C. Boyce, X. S. Li and S. Berko, J. Polymer Sci.: Part B: Polymer Phys. 31 (1993) 185.

    Google Scholar 

  35. R. J. M. Smit, W. A. M. Brekelmans and H. E. H. Meijer, J. Mater. Sci. 35 (2000) 2881.

    Google Scholar 

  36. P. D. Ritchie, S. W. CRitchley and A. Hill, “Plasticisers, Stabilisers and Fillers” (Lliffe Books, London, 1972).

    Google Scholar 

  37. C. S. Henkee and E. J. Kramer, J. Polym. Sci. Polym. Phys. Ed. 22 (1984) 721.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smit, R.J.M., Brekelmans, W.A.M. & Meijer, H.E.H. Predictive modelling of the properties and toughness of polymeric materials Part II Effect of microstructural properties on the macroscopic response of rubber-modified polymers. Journal of Materials Science 35, 2869–2879 (2000). https://doi.org/10.1023/A:1004763606229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004763606229

Keywords

Navigation