Skip to main content
Log in

Oxidation behavior of Mo≤5Si3C≤1 and its composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxidation behavior of Mo≤5Si3C≤1 and its composites was studied in air over the temperature range of 500°C–1600°C. Experiments revealed poor oxidation resistance of monolithic Mo≤5Si3C≤1 at high temperature. The oxidation was quite rapid at 1200°C and above, resulting in complete oxidation of specimens in a short time. The addition of 2.0 wt% boron was found to produce a Mo≤5Si3C≤1 composite with three other phases of MoB, MoSi2, and SiC, and showed remarkable improvement in oxidation resistance. The mechanism for the improvement was attributed to the viscous sintering of the scale to close the pores formed during the initial oxidation period. Oxidation tests were also conducted on SiC-Mo≤5Si3C≤1 composite at 800°C, 1300°C and 1600°C for more than 100 hours. The oxidation resistance of the composite was found to be very good. The results demonstrate that, though oxidation resistance of monolithic Mo≤5Si3C≤1 is far insufficient for high-temperature applications, boron-modification and/or composites with SiC are viable methods to improve oxidation resistance to a practically acceptable level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Upadhya, J.-M. Yang and W. P. Hoffman, Amer. Ceram. Soc. Bull. 76 (1997) 51.

    Google Scholar 

  2. P. J. Meschter and D. S. Schwartz, JOM 41 (1989) 52.

    Google Scholar 

  3. J.-P. Hirvonen, P. Torri, R. Lappalainen, J. Likonen, H. Kung, J. R. Jervis and M. Nastasi, J. Mater. Res. 13 (1998) 965.

    Google Scholar 

  4. K. Ito, T. Yano, T. Nakamoto, M. Moriwaki, H. Inui and M. Yamaguchi, Progress in Materials Science 42 (1997) 193.

    Google Scholar 

  5. S. Bose, Mater. Sci. Eng. A155 (1992) 217.

    Google Scholar 

  6. A. K. Vasudevan and J. J. Petrovic, ibid. A155 (1992) 1.

    Google Scholar 

  7. H. Nowotny, E. Parthe, R. Kieffer and F. Benesovsky, Monatsh. Chem. 85 (1954) 255.

    Google Scholar 

  8. E. Parthe, W. Jeitschko and V. Sadagopan, Acta Crystallogr. 19 (1965) 1031.

    Google Scholar 

  9. L. Brewer and O. Krikorian, J. Electrochem. Soc. 85 (1956) 38.

    Google Scholar 

  10. F. J. J. Van loo, F. M. Smet, G. D. Rieck and G. Verspui, High Temp.-High Press. 14 (1982) 25.

    Google Scholar 

  11. A. Costaesilva and M. J. Kaufman, Metall. Mater. Trans. 25A (1994) 5.

    Google Scholar 

  12. S. Maloy, A. H. Heuer, J. Lewandowski and J. Petrovic, J. Amer. Ceram. Soc. 74 (1991) 2704.

    Google Scholar 

  13. S. Maloy, J. J. Lewandowski, A. H. Heuer and J. J. Petrovic, Mater. Sci. Eng. A155 (1992) 159.

    Google Scholar 

  14. Y. Suzuki and K. Niihara, Intermetallics 6 (1998) 7.

    Google Scholar 

  15. R. Raj, J. Amer. Ceram. Soc. 76 (1993) 2147.

    Google Scholar 

  16. M. K. Meyer and M. Akinc, ibid. 79 (1996) 938.

    Google Scholar 

  17. M. W. Chase, Jr., C. W. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. Mcdonald and A. N. Syverud, JANAF Thermochemical Tables, 3rd ed. (American Chemical Society, New York, 1985). J. Phys. Chem. Vol. 14, Suppl. 1. (Ref. Data).

    Google Scholar 

  18. T. C. Chou and T. G. Nieh, J. Mater. Res. 8 (1993) 214.

    Google Scholar 

  19. W. B. White, S. M. Johnson and G. B. Dantzig, J. Chem. Phys. 28 (1958) 751.

    Google Scholar 

  20. D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed. (Washington, 1971).

  21. I. Barin, F. Sauert, E. Schultze-rhonhof and S. S. Wang, Thermochemical Data of Pure Substance, Federal Republic of Germany, 1993.

  22. J. B. Berkowitz-mattuck and R. R. Dils, J. Electrochem. Soc. 112 (1965) 583.

    Google Scholar 

  23. A. W. Searcy, J. Amer. Ceram. Soc. 40 (1957) 431.

    Google Scholar 

  24. R. W. Bartlett, J. W. Mccamont and P. R. Gage, ibid. 48 (1965) 551.

    Google Scholar 

  25. Q. S. Zhu, X. L. Qiu and C. W. Ma, Computers & Applied Chemistry 13 (1996) 91.

    Google Scholar 

  26. T. Narushima, T. Goto, Y. Iguchi and T. Hirai, J. Amer. Ceram. Soc. 74 (1991) 2583.

    Google Scholar 

  27. Q. S. Zhu, X. L. Qiu and C. W. Ma, J. Nucl. Mater. 254 (1998) 221.

    Google Scholar 

  28. D. S. Fox, J. Amer. Ceram. Soc. 81 (1998) 945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Shobu, K., Tani, E. et al. Oxidation behavior of Mo≤5Si3C≤1 and its composites. Journal of Materials Science 35, 863–872 (2000). https://doi.org/10.1023/A:1004786005333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004786005333

Keywords

Navigation