Skip to main content
Log in

Observation of the Stratospheric NO2 Latitudinal Distribution in the Northern Winter Hemisphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

During a series of flights in the winters 1991/92 to 1994/95 total stratospheric NO2 was measured by means of the DOAS (Differential Optical Absorption Spectroscopy) technique on board a C160 (Transall) aircraft. In an area covering 60°W to 60°E, and 16°N to 86°N, the total stratospheric NO2 was observed to vary markedly with latitude and season (winter and spring). In the mid-winter Arctic vortex extremely low total stratospheric NO2 (< 3.1014/cm2) was always found, generally larger amounts of NO2 occurred outside the vortex in winter and towards the spring both inside and outside the vortex. This behaviour of stratospheric NO2 can be explained by the denoxification of the wintertime polar stratosphere. Ambient to the vortex in mid-winter however, ‘sudden’ increases of total stratospheric NO2 by about a factor of 3 were observed. These sudden increases in stratospheric NO2 coincide with a change in the wavenumber 2 of the geopotential height at 60°N, which indicates that most likely the events are caused by planetary waves efficiently transporting air masses rich in NOx from lower to higher latitudes. The monitoring of stratospheric NO2, during latitudinal traverses ranging from the Arctic (80°N) to the Subtropics (18°N) in spring also unexpectedly showed a large variability in total stratospheric NO2 at mid-latitudes. Since photochemistry almost certainly can be excluded, it is proposed that the observed variability may be due to the planetary wave activity of the stratospheric surf zone, known to dynamically connect the tropical and the polar stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amoruso, A., L. Crescentini, G. Fiocco, and M. Volpe, 1993: New Measurements of the NO2 Absorption Cross Section in the 440 to 460 nm Region and Estimates of the NO2-N2O4 Equilibrium Constant, J. Geophys. Res., 98, 16857–16863.

    Google Scholar 

  • Arnold, F., T. Bührke, and S. Qui, 1990: Evidence for stratospheric ozone depleting heterogeneous chemistry on volcanic aerosols from El Chichon, Nature, 348, 49.

    Google Scholar 

  • Beyerle, G., A. Herber, R. Neuber, and H. Gernandt, 1995: Temporal development of Mt Pinatubo aerosols as observed by lidar and sun photometer at Ny-Alesund, Spitsbor gen, Geophys. Res. Lett., 22,18, 2497.

    Google Scholar 

  • Blom, C. E., H. Fischer, N. Glatthor, T. Gulde, and M. Höpfner, 1994: Airborne Measurements during the European Arctic Stratospheric Ozone Experiment: Column amounts of H N O 3 and O 3 derived from FTIR emission sounding, Geophys. Res. Lett., 21,13, 1351.

    Google Scholar 

  • Brandtjen, R., T. Klüpfel, and D. Perner, 1994: Airborne Measurements during the European Arctic Stratospheric Ozone Experiment: Observation of OCIO, Geophys. Res. Lett., 21,13, 1363.

    Google Scholar 

  • Brasseur, G., C. Granier, and S. Walters, 1990: Future changes in stratospheric ozone and the role of heterogenous chemistry, Nature, 348, 626.

    Google Scholar 

  • Coquart, B., A. Jenouvrier, and F. Merienne, 1995: The NO2 Absorption spectrum. 2. Absorption Cross-section at Low Temperature in the 400–500 nm Region, J. Atmos. Chem., 21, 251–261.

    Google Scholar 

  • Crutzen, P., 1970: The influence of nitrogen oxides on the atmospheric ozone content, Quart. J. Meteoro. Soc., 96, 320.

    Google Scholar 

  • Fahey, D.W., S. R. Kawa, E.L. Woodbridge, P. Tin, J.C. Wilson, H.H. Jonsson, J. E. Dye, D. Baumgardner, S. Borrmann, D.W. Toohey, L. M. Avalone, M.H. Proffitt, J. Margitan, M. Loewenstein, J.R. Podolske, R.J. Salawitch, S.C. Wofsy, M.K.W. Ko, D.E. Anderson, M.R. Schoeberl, and K.R. Chan, 1993: In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion, Nature, 363, 509.

    Google Scholar 

  • Fish, D., and R.L. Jones, 1995: Rotational Raman scattering and the Ring effect in zenith-sky spectra, Geophys. Res. Lett., 22, 811–814.

    Google Scholar 

  • Frank, H., and U. Platt, 1990: Advanced Calculation Procedures for the Interpretation of skylight measurements, Proc. of the first European Workshop on Polar Stratospheric Ozone, Schliersee/Bavaria FRG.

  • Frost, G.J., L.M. Gross, and V. Vaida, 1996: Measurements of High Resolution Ultraviolet-Visible Absorption Cross Section at Stratospheric Temperatures:, 1. Nitrogen Dioxide, J. Geophys. Res., 101, 3869–3877

    Google Scholar 

  • Granier, C., and G. Brasseur, 1992: Impact of heterogenous chemistry on model predictions of ozone changes, J. Geophys. Res., 97, 18015–18033.

    Google Scholar 

  • Hall, T.C., and F.E. Blacet, 1952: Separation of the absorption lines of NO2 and N2O4 in the range of 2400–5000 Angström, J. of Chem. Physics, 20, 1745

    Google Scholar 

  • Hanson, D.H., and A.R. Ravishankara, 1991: The reaction probability of CIONO2 and N2O5 on 40 to 75 % sufluric acid solutions, J. Geophys. Res., 96, 17307–17314

    Google Scholar 

  • Haug, H., L. Marquardt, K. Pfeilsticker, and U. Platt, 1997: On the importance of Raman scattering for the atmospheric radiative transfer, (Geophys. Res. Lett., (submitted) 1997.

  • Harwood, M.H., and R.L. Jones, 1994: Temperature dependent ultraviolet-visible absorption cross sections of NO2 and N2O4: Low-temperature measurements of the equilibrium constant for 2NO2 to N2O4, J. Geophys. Res., 99, 22955–22964.

    Google Scholar 

  • Hofmann, D.J., and S. Solomon, 1989: Ozone destruction through heterogeneous chemistry following the eruption of El Chichon, J. Geophys. Res., 94, 5029–5041.

    Google Scholar 

  • Hofmann, D.J., S.J. Oltmans, W.D. Komhyr, J.M. Harris, J.A. Lathrop, A.O. Langford, T. Deshler, B. J. Johnson, A. Torres, and W.A. Matthews, 1994: Ozone loss in the lower stratosphere over the United States in 1992–1993, Evidence for heterogeneous chemistry in the Pinatubo acrosol, Geopys. Res. Lett. 21,1, 65.

    Google Scholar 

  • Holton, J. R., P.H. Haynes, E. McIntyre, A.R. Douglass, B. Rood, and L. Pfister, 1995: Stratosphere/Troposphere Exchange, Review of Geophysics, 33, 4, and reference therein.

    Google Scholar 

  • Johnston, L.S., 1971: Reduction of stratospheric ozone by nitrogen oxides catalysts supersonic transport exhaust, Science, 173, 517.

    Google Scholar 

  • Johnston, P.V., and McKenzie, NO2 Observation at 45° N during the decreasing phase of the solar cycle 21, from 1980 to 1987, 1989: J. Geophys. Res., 94, 3473–3486.

  • Johnston, P.V., R. L. Mc Kenzie, J.G. Keys, and W. A. Matthews, 1992: Observation of depleted stratospheric NO2 following the Pinatubo volcanic eruption, Geophys. Res. Lett., 19,2, 211–213.

    Google Scholar 

  • Keys, J.G., P.V. Johnston, R.D. Blatherwick, and F.J. Murcray, 1993: Evidence for heterogenous reactions in the Antarctic autumn stratosphere, Nature, 361, 49.

    Google Scholar 

  • Koike, M., N.B. Jones, W.A. Matthews, P.V. Johnston, R.L. McKenzie, D. Kinnison, and J. Rodriguez, 1994: Impact of Pinatubo aerosols on the partitioning between NO2 and HNO3, Geophys. Res. Lett., 21,7, 597.

    Google Scholar 

  • Kreher, K., M. Fiedler, T. Gomer, J. Stutz, and U. Platt, 1995: The latitudinal distribution (50° N to 50° S) of NO2 and O3 in October and November 1990, Geophys. Res. Lett., 22, 1217–1220

    Google Scholar 

  • Lary, D.J., 1991: Photochemical studies with a 3D model of the atmosphere, Ph.D. Thesis, University of Cambridge.

  • Lary, D.J., J.A. Pyle, and G. Carver, 1994: A 3-dimensional model study of nitrogenoxides in the stratosphere, Quart. J. of the Royal Met. Society, 120,No. 516, 453–482.

    Google Scholar 

  • Leroy, B., P. Rigaud, and E. Ricks, 1987: Visible absorption cross section of NO2 at 298 K and 235 K, Annales Geophysicae, 5A,(4), 247–250.

    Google Scholar 

  • Leu, M.T., Laboratory studies of sticking coefficients and heterogeneous reactions important in the Antarctic stratosphere, 1988: Geophys. Res. Lett., 15, 17–20.

    Google Scholar 

  • McKenzie, R.L., and P. V. Johnston, 1982: Seasonal variation in stratospheric NO2 at 45 degrees, Geophys. Res. Lett., 5, 777–780

    Google Scholar 

  • Merienne, M.F., A. Jenouvier, and B. Coquart, 1995: The NO2 Absorption spectrum. 1. Absorption Cross-section at Ambient Temperature in the 300–500 nm Region, J. Atmos. Chem., 20, 281–297

    Google Scholar 

  • Mozurkewich, M., and J. D. Calvert, 1988: Reaction probability of N2O5 on aqueous aerosols, J. Geophys. Res., 93, 15889–15896.

    Google Scholar 

  • Naujokat, B., K. Labitzke, R. Lenschow, B. Rajewski, M. Wiesner, and R.C. Wohlfahrt, 1995: The stratospheric winter 1994/95, A cold winter with a strong minor warming, Beilage zur Berliner Wetterkarte, SO 24/95.

  • Noxon, J.F., 1978: Stratoopheric NO2 in the Antaretic winter, Geophys. Res. Lett., 5, 1021–1022

    Google Scholar 

  • Noxon, J.F., 1979: Stratospheric NO2 global behavior, J. Geophys. Res., 84, 5067.

    Google Scholar 

  • Pawson, S., B. Nanjokat, and K. Labitzke, 1995: On the the polar stratospheric cloud formation potential of the northern hemisphere, J. Geophys. Res., 100, 23215–23225.

    Google Scholar 

  • Perliski, L.M., and S. Solomon, 1992: Radiative Influences of Pinatubo Aerosols on Twilight Observations of NO2 Column Abundances, Geophys. Res. Lett., 19 1923–1927.

    Google Scholar 

  • Pfeilsticker, K., and U. Platt, 1994: Airborne measurements during the Arctic stratospheric experiment: Observation of O3 and NO2, Geophys. Res. Lett., 21,13, 1375–1378

    Google Scholar 

  • Pfeilsticker, K., C.E. Blom, R. Brandtjen, H. Fischer, N. Glatthor, A. Grendel, T. Gulde, M. Höpfner, D. Perner, Ch. Piesch, U. Platt, W. Ronger, J. Sessler, and M. Wirth, 1997: Aircraft-borne Detection of the Stratospheric Column Amounts of O3, NO2, OClO, ClNO3, HNO3, and Aerosols around the Arctic Vortex (79° N to 39° N) during Spring 1993, 1. Observational data, J. Geophys. Res., 102, 10801–10814.

    Google Scholar 

  • Pommereau, J. P., and J. Piquard, 1994: Ozone and nitrogen dioxide vertical distribution by UV-visible solar occultation from balloons, Geophys. Res. Lett. 21,13, 1227.

    Google Scholar 

  • Roscoe, H. 1982: Tentative observation of stratospheric N2O5, Geophys. Res. Lett., 9, 901–902.

    Google Scholar 

  • Roscoe, H. K., and A. K. Hind, 1993: The equilibrium constant of NO2 with N2O4, and the Temperature Dependence of the Visible Spectrum of NO2: A critical Review and the Inplications for Meaasurements of NO2 in the Polar Stratosphere, J. of Atmos. Chem., 16, 257–276.

    Google Scholar 

  • Schneider, W., G.K. Moortgat, G. S. Tyndall, and J. Burrows, 1987: Absorption Cross Section of NO2 in the UV and Visible Region (200–700 nm) at 298 K, J. of Photochemistry and Photobiology, A: Chemistry, 40, 195–217.

    Google Scholar 

  • Senne, T., J. Stutz, and U. Platt, 1996: Measurement of the latitudinal distribution of NO2 column density and layer height in Oct./Nov. 1993, Geophys. Res. Lett., 23,8, 805.

    Google Scholar 

  • Sessler, J., 1995: The Arctic Winter Stratosphere, A modelling and data study, Ph.D. thesis, University of Cambridge.

  • Solomon, S., R. R. Garcia, F.S. Rowland, and D. Wuebbles, 1986: On the depletion of Antarctic ozone, Nature, 321, 755–758.

    Google Scholar 

  • Solomon, S., and A.L. Schmeltekopf, 1987: On the interpretation of Zenith Sky Measurements, J. Geophys. Res. 92, 8311–8319.

    Google Scholar 

  • Solomon, S., and J. G. Keys, 1992: Seasonal variation in Antarctic NOx Chemistry, J. Geophys. Res., 97, 7971–7979.

    Google Scholar 

  • Stutz, J., and U. Platt, Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods, Applied Optics, 35, 6041–6053.

  • Tolbert, M., A.M. Rossi, and D.M. Golden, 1988aHeterogenous interactions of chlorine nitrate hydrogen chloride and nitric acid with sulfuric acid surfaces at stratospheric temperatures, Geophys. Res. Lett., 15, 847–850.

    Google Scholar 

  • Tolbert, M., A.M. Rossi, and D.M. Golden, 1988b: Antarctic ozone depletion chemistry: reactions of N2O5 with H2O and HCl on ice surfaces, Science, 240, 1018–1021.

    Google Scholar 

  • Toumi, R., R.L. Jones, and J.A. Pyle, 1993: Stratospheric ozone depletion by ClNO3 photolysis, Nature, 365, 37–39.

    Google Scholar 

  • Wetzel, G., T. von Clarmann, H. Oelhaf, and H. Fischer, 1995: Vertical profiles of N2O5 along with CH4, N2O and H2O in the late Arctic winter retrieved from MIPAS-B infrared emission measurements, J. Geophys. Res., 100, 23173–23181.

    Google Scholar 

  • Wirth, M., G. Ehret, P. Moerl, and W. Renger, 1994 The two dimensional stratospheric aerosol distribution during EASOE, Geophys. Res. Lett., 21,13, 1287.

    Google Scholar 

  • WMO, 1985: Scientific Assessment of Ozone depletion: Report 16.

  • WMO, 1991: Scientific Assessment of Ozone depletion: Report 25.

  • Worsnop, D. M., M. Zahniser, C. Kolb, L. Watson, J. Van Doren, J. Jayne, and P. Davidovits, 1988: Mass accomodation coefficient measurements for HNO3, HCl and N2O5 on water ice and aqueous sulfuric acid droplet surfaces, Polar Ozone Workshop, National Aeronautics and Space Administration, Snowmass, Colo.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeilsticker, K., Erle, F. & Platt, U. Observation of the Stratospheric NO2 Latitudinal Distribution in the Northern Winter Hemisphere. Journal of Atmospheric Chemistry 32, 101–120 (1999). https://doi.org/10.1023/A:1006033625952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006033625952

Navigation