Skip to main content
Log in

Comparison of the cell cytoskeleton in migratory and stationary chick fibroblasts

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The organization of the principal cytoskeletal components (actin, tubulin and 10 nm filament protein) have been compared by immunofluoresence microscopy in two populations of chick heart fibroblasts, previously shown to be adapted respectively for rapid, directed migration or adhesion and growth. We find that neither microtubule nor 10 nm filament distributions alter significantly during the conversion from the migratory to the stationary state but in contrast there are significant differences in the organization of actin. The stationary cells possess more numerous and thicker stress fibre bundles. The variety of patterns observed in the migratory cells are documented and the possible roles of the different components of the cytoskeleton in cell locomotion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABERCROMBIE, M. (1961) The basis of the locomotory behaviour of fibroblasts.Expl Cell Res. 8, Suppl. 188–98.

    Google Scholar 

  • ABERCROMBIE, M., DUNN, G. A. & HEATH, J. P. (1976) Locomotion and contraction in non-muscle cells. InContractile Systems in Non-Muscle Tissues (edited by PERRY, S. V., MARGRETH, A. and ADELSTEIN, R. S.), pp. 3–11. Amsterdam: North Holland.

    Google Scholar 

  • ABERCROMBIE, M., HEAYSMAN, J. E. & PEGRUM, S. M. (1970) The locomotion of fibroblasts in culture I. Movements of the leading Edge.Exp Cell Res. 59, 393–8.

    Google Scholar 

  • BADLEY, R. A., LLOYD, C. W., WOODS, A., CARRUTHERS, L., ALLCOCK, C. & REES, D. A. (1978) Mechanisms of cellular adhesion. III. Preparation and preliminary characterisation of adhesions.Expl Cell Res. 117, 231–44.

    Google Scholar 

  • BHISEY, A. N. & FREED, J. J. (1971) Ameboid movement induced in cultured macrophages by colchicine or vinblastine.Expl Cell Res. 64, 419–29.

    Google Scholar 

  • BRINKLEY, B. R., FULLER, G. M. & HIGHFIELD, D. P. (1975) Cytoplasmic microtubules in normal and transformed cells in culture: Analysis by tubulin antibody immunofluorescence.Proc. natn Acad. Sci. U.S.A. 72, 4981–5.

    Google Scholar 

  • BUCKLEY, I. K. & PORTER, K. R. (1967) Cytoplasmic fibrils in living cultured cells. A light and electron microscope study.Protoplasma 64, 349–80.

    Google Scholar 

  • BUCKLEY, I. K. & PORTER, K. R. (1975) Electron microscopy of critical point dried whole cultured cells.J. Microscopy 104, 107–20.

    Google Scholar 

  • CHEN, W.-T. (1979) Induction of spreading during fibroblast movement.J. Cell Biol. 81, 684–91.

    Google Scholar 

  • CHEUNG, H. T., CANTAROW, W. D. & SUNDHARADAS, G. (1978) Colchicine and cytochasin B (CB) effects on random movement, spreading and adhesion of mouse macrophages.Expl Cell Res. 111, 95–103.

    Google Scholar 

  • COUCHMAN, J. R. & REES, D. A. (1979a) Actomyosin organisation for adhesion, spreading, growth and movement in chick fibroblasts.Cell Biol. Int. Reports 3, 431–9.

    Google Scholar 

  • COUCHMAN, J. R. & REES, D. A. (1979b) Behaviour of fibroblasts migrating from chick heart explants: Changes in adhesion, locomotion, and growth and in the distribution of actomyosin and fibronectin.J. Cell Sci. 39, 149–65.

    Google Scholar 

  • FRANKE, W. W., SCHMID, E., OSBORN, M. & WEBER, K. (1978) Different intermediate-sized filaments distinguished by immunofluorescence microscopy.Proc. natn Acad. Sci. U.S.A. 75, 5034–8.

    Google Scholar 

  • FULLER, G. M., BRINKLEY, B. R. & BOUGHTER, J. M. (1975) Immunofluorescence of mitotic spindles using monospecific antibody against bovine brain tubulin.Science 187, 948–50.

    Google Scholar 

  • GAIL, M. H. & BOONE, C. W. (1971) Effect of colcemid on fibroblast motility.Exp. Cell Res. 65, 221–7.

    Google Scholar 

  • GOLDMAN, R. D. (1971) The role of the three cytoplasmic fibes in BHK21 cell motility. I. Microtubules and the effects of colchicine.J. Cell Biol. 51, 752–62.

    Google Scholar 

  • GOLDMAN, R. D., BERG, G., BUSHNELL, A., CHENG-MING, C., DICKERMAN, L., HOPKINS, N., MILLER, M. L., POLLACK, R. L. & WANG, E. (1973) Fibrillar systems in cell motility. InLocomotion of Tissue Cells (edited by PORTER, R. and FITZSIMONS, D. W.), pp. 83–103. Amsterdam: Associated Scientific Publishers.

    Google Scholar 

  • GOLDMAN, R. D., SCHLOSS, J. A. & STARGER, J. M. (1976) Organisational changes of actinlike microfilaments during animal cell movement.Cold Spring Harbor Conference on Cell Proliferation 3, 217–45.

    Google Scholar 

  • GORDON, W. E., BUSHNELL, A. & BURRIDGE, K. (1978) Characterisation of the intermediate (10 nm) filaments of cultured cells using an autoimmune rabbit antiserum.Cell 13, 249–61.

    Google Scholar 

  • HEGGENESS, M. H., WANG, K. & SINGER, S. J. (1977) Intracellular distributions of mechanochemical proteins in cultured fibroblasts.Proc. natn Acad. Sci. U.S.A. 74, 3883–7.

    Google Scholar 

  • HUXLEY, H. E. (1973) Muscular contraction and cell motility.Nature 243, 445–9.

    Google Scholar 

  • HYNES, R. O. & DESTREE, A. T. (1978) 10 nm filaments in normal and transformed cells.Cell 13, 151–63.

    Google Scholar 

  • ISENBERG, G., RATHKE, P., HULSMANN, N., FRANKE, W. W. & WOHLFARTH-BOTTERMANN, K. E. (1976) Cytoplasmic actomyosin fibrils in tissue culture cells. Direct proof of contractility by visualisation of ATP-induced contraction in fibrils isolated by laser micro-beam dissection.Cell Tissue Res. 166, 427–43.

    Google Scholar 

  • JOKUSCH, B. M., KELLEY, K. H., MEYER, R. K. & BURGER, M. M. (1978) An efficient method to produce specific anti-actin.Histochemistry 55, 177–84.

    Google Scholar 

  • LAZARIDES, E. (1976) Two general classes of cytoplasmic actin filaments in tissue culture cells: The role of tropomyosin.J. supramol. Struct. 5, 531–63.

    Google Scholar 

  • LAZARIDES, E. & BURRIDGE, K. (1975) α-Actinin: Immunofluorescent localisation of a muscle structural protein in non-muscle cells.Cell 6, 289–98.

    Google Scholar 

  • LAZARIDES, E. & REVEL, J. P. (1979) The molecular basis of cell movement.Scient. Am. 240, 88–100.

    Google Scholar 

  • LAZARIDES, E. & WEBER, K. (1974) Actin antibody: The specific visualisation of actin filaments in non-muscle cells.Proc. natn Acad. Sci. U.S.A. 71, 2268–72.

    Google Scholar 

  • LLOYD, C. W., SMITH, C. G., WOODS, A. & REES, D. A. (1977) Mechanisms of cellular adhesion. II. The interplay between adhesion, the cytoskeleton and morphology in substrate-attached cell.Expl Cell Res. 110, 427–37.

    Google Scholar 

  • OSBORN, M. & WEBER, K. (1976) Cytoplasmic microtubules in tissue culture cells appear to grow from an organizing structure towards the plasma membrane.Proc. natn Acad. Sci. U.S.A. 73, 867–71.

    Google Scholar 

  • OSBORN, M. & WEBER, K. (1977) The display of microtubules in transformed cells.Cell 12, 561–71.

    Google Scholar 

  • RASH, J. E., McDONALD, T. F., SACHS, H. G. & EBERT, J. D. (1972) Muscle-like arrays in a fibroblast line.Nature New Biol. 237, 160.

    Google Scholar 

  • SMALL, J. V. & CELIS, J. E. (1978) Filament arrangements in negatively stained cultured cells: The organisation of actin.Cytobiologie 16, 308–25.

    Google Scholar 

  • STARGER, J. M. & GOLDMAN, R. D. (1977) Isolation and preliminary characterisation of 10 nm filaments from baby hamster kidney (BHK-21) cells.Proc. natn Acad. Sci. U.S.A. 74, 2433–6.

    Google Scholar 

  • TAYLOR, D. L. (1976) Motile model systems of amoeboid movement.Cold Spring Harbor Conference on Cell Proliferation 3, 797–821.

    Google Scholar 

  • TILNEY, L. G. (1975) The role of actin in non-muscle cell motility. InMolecules and Cell Movement (edited by INOUE, S. and STEPHENS, R. E.), pp. 339–386. New York: Raven Press.

    Google Scholar 

  • WANG, K., HEGGENESS, M. H. & SINGER, S. J. (1978) Mechanochemical proteins and cell-cell interactions. InThe Molecular Basis of Cell-Cell Interaction (edited by LERNER, R. A. and BERGSMA, D.), pp. 29–40. New York: A. R. Liss Inc.

    Google Scholar 

  • WEBSTER, R. E., OSBORN, M. & WEBER, K. (1978) Visualization of the same PtK2 cytoskeletons by both immunofluorescence and low power electron microscopy.Expl Cell Res. 117, 47–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badley, R.A., Couchman, J.R. & Rees, D.A. Comparison of the cell cytoskeleton in migratory and stationary chick fibroblasts. J Muscle Res Cell Motil 1, 5–14 (1980). https://doi.org/10.1007/BF00711922

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711922

Keywords

Navigation