Skip to main content
Log in

Modulation of Ca2+ channels, charge movement and Ca2+ transients by heparin in frog skeletal muscle fibres

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

This study is an investigation into the modulatory effects of heparin, a component of the extracellular matrix that binds to dihydropyridine receptors, on contraction and Ca2+ channels in frog skeletal muscle. Using tension and Ca2+ signal measurements in single intact skeletal muscle cells we have found that heparin (100–200 μg ml-1) substantially potentiates twitch and tetanic tension (55% and 28%, respectively). In contrast, heparin reduces the amplitude of K+ contractures. Heparin most likely potentiates twitch tension by prolonging action potentials. The ionic basis of this effect was investigated in voltage-clamp experiments. Membrane currents were monitored in voltage-clamped segments of single fibres using the triple Vaseline gap technique. We found that heparin partially blocks delayed rectifier potassium channels. The depressive effects of heparin on K+ contractures prompted us to investigate the effects of heparin on charge movement and Ca2+ currents (I Ca) under voltage-clamp. Charge movement was measured using a subtraction procedure that employed a -20 mV control pulse from a holding potential of 100 mV. Heparin depresses the total charge by 25%. We propose that the reduction in the amplitude of potassium contractures is related to a partial blockade of charge movement. Extracellular heparin shifts the I Ca-V relation toward more negative voltages and delays the deactivation of tail currents. Double pulse experiments revealed that conditioning depolarizations speed the activation of I Ca during test depolarizations. Heparin does not affect this process. The primary action of heparin is to accelerate the activation of I Ca during pulses not preceded by conditioning depolarizations. Overall, the kinetic effects of heparin on I Ca would increase the Ca2+ influx associated with action potentials. However, mechanical and optical experiments performed in Ca2+-free solutions and in the presence of Ca2+ channel blockers revealed that twitch and tetanic potentiation occur even in the absence of Ca2+-influx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADAMS, J. C. & WATT, F. M. (1993) Regulation and differentiation by the extracellular matrix. Development. 117, 1183–98.

    Google Scholar 

  • ADRIAN, R. H., CHANDLER, W. K. & RAKOWSKI, R. F. (1976) Charge movement and mechanical repriming in skeletal muscle. J. Physiol. 254, 361–88.

    Google Scholar 

  • ALBERTS, B., BRAY, D., LEWIS, J., RAFF, M., ROBERTS, K. & WATSON, J. D. (1989) Cell adhesion, cell junctions and the extracellular matrix. In Molecular Biology of the Cell (edited by ROBERTSON, M.) pp. 802–34. New York and London: Garland Publishing, Inc.

    Google Scholar 

  • ARMSTRONG, C. M. & BEZANILLA, F. (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J. Gen. Physiol. 63, 533–52.

    Google Scholar 

  • ARREOLA, J., CALVO, J., GARCIA, M. C. & SÁNCHEZ, J. A. (1987) Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate. J. Physiol. 393, 307–30.

    Google Scholar 

  • CARDIN, A. D., DEMETER, D. A., WEINTRAUB, H. J. R. & JACKSON, R. L. (1991) Molecular design and modeling of protein-heparin interactions. Methods Enzymol. 203, 556–83.

    Google Scholar 

  • CASTELLOT, J. J., WONG, K., HERMAN, B., HOOVER, R. L., ALBERTINI, D. F., WRIGHT, T. C., CAALEB, B. L., & KARNOVSKY, M. J. (1985) Binding and internalization of heparin in vascular smooth muscle cells. J. Cell. Physiol. 124, 13–20.

    Google Scholar 

  • COLOMO, F. & ROCCHI, P. (1965) Staircase effect and posttetanic potentiation in frog nerve single muscle fibre preparation. Arch. Physiol. 64, 189–266.

    Google Scholar 

  • COTA, G. & STEFANI, E. (1981) Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibres. J. Physiol. 317, 303–16.

    Google Scholar 

  • DELAY, M., GARCÍA, D. E. & SÁNCHEZ, J. A. (1990) The effects of lyotropic anions on charge movement, calcium currents and calcium signals in frog skeletal muscle fibres. J. Physiol. 425, 449–69.

    Google Scholar 

  • DIFRANCO, M. (1991) Medición cuantitativa de la concentración mioplasmática de calcio en fibras musculares esqueléticas (PhD thesis). Caracas: Universidad Central de Venezuela.

  • DONALDSON, S. K., GOLDBERG, N. D., WALSETH, T. F. & HUETTEMAN, D. A. (1988) Voltage dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in peeled skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 85, 5749–53.

    Google Scholar 

  • DULHUNTY, A. F. & GAGE, P. W. (1988) Effects of extracellular calcium concentration and dihydropyridines on contraction in mammalian skeletal muscle. J. Physiol. 399, 63–80.

    Google Scholar 

  • ESCOBAR, A. L., MONCK, J. R., FERNÁNDEZ, J. & VERGARA, J. (1994) Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres. Nature 367, 739–41.

    Google Scholar 

  • FELDMEYER, D., MELZER, W., POHL, B., & ZÖLLNER, P. (1990) Fast gating kinetics of the slow Ca2+ currents in cut skeletal muscle fibres of the frog. J. Physiol. 425, 347–67.

    Google Scholar 

  • GARCÍA, M. C., DÍAZ, A. F., GODÍNEZ, R. & SÁNCHEZ, J. A. (1992) Effect of sodium deprivation on contraction and charge movement in frog skeletal muscle fibers. J. Muscle Res. Cell Motil. 13, 354–65.

    Google Scholar 

  • GARCÍA, M. C., SÁNCHEZ, J. A., SHARMA, V. K. & SHEU, S. S. (1995) Extracellular heparin inhibits Ca2+ transients and contraction in mammalian cardiac myocytes. Pflügers Arch. Eur. J. Physiol. 431, 84–90.

    Google Scholar 

  • HANNON, J. D., LEE, N. K-M., YANDONG, G. & BLINKS, J. R. (1992) Inositol triphosphate (InsP3) causes contraction in skeletal muscle only under artificial conditions: evidence that Ca2+ release can result from depolarization of T-tubules. J. Muscle Res. Cell Motil. 13, 447–56.

    Google Scholar 

  • HILLE, B. & CAMPBELL, D. T. (1976) An improved Vaseline gap voltage clamp for skeletal muscle fibers. J. Gen. Physiol. 67, 265–93.

    Google Scholar 

  • HODGKIN, A. L. & HOROWICZ, P. (1960) Potassium contractures in single muscle fibres. J. Physiol. 153, 386–403.

    Google Scholar 

  • HUANG, L. H. (1993) The activation of striated muscle. In Intramembrane charge movements in striated muscle (edited by HUANG, L. H.) pp. 240–2. Oxford. Clarendon Press.

    Google Scholar 

  • KARDAMI, E., SPECTOR, D. & STROHMAN, R. C. (1988) Heparin inhibits skeletal muscle growth in vitro. Develop. Biol. 126, 19–28.

    Google Scholar 

  • KNAUS, H. G., SCHEFFAUER, F., ROMANIN, C., SCHINDLER, H. G. & GLOSSMANN, H. (1990) Heparin binds with high affinity to voltage-dependent l-type Ca2+ channels. J. Biol. Chem. 265, 11156–66.

    Google Scholar 

  • LACINOVA, L., CLEEMANN, L. & MORAD, M. (1993) Ca2+ channel modulating effects of heparin in mammalian cardiac myocytes. J. Physiol. 465, 181–201.

    Google Scholar 

  • LAMB, G. D., POSTERINO, G. S. & STEPHENSON, D. G. (1994) Effects of heparin on excitation-contraction coupling in skeletal muscle of toad and rat. J. Physiol. 474, 319–29.

    Google Scholar 

  • MARTÍNEZ, M., FARÍAS, J. M., GARCÍA, M. C. & SÁNCHEZ, J. A. (1994) Effects of extracellular heparin on excitation-contration coupling in frog skeletal muscle fibers. (Abstract). Biophys. J. 66, A243.

    Google Scholar 

  • MELZER, W., HERMANN-FRANK, A. & LÜTTGAU, H. C. H. (1995) The role of Ca2+ ion in excitation-contraction coupling of skeletal muscle fibres. Biochem. Biophys. Acta 1241, 59–116.

    Google Scholar 

  • MILEDI, R., PARKER, I. & ZHU, P. H. (1984) Extracellular ions and excitation-contraction coupling in frog twitch muscle fibres. J. Physiol. 351, 687–710.

    Google Scholar 

  • PAPE, P. C., KONISHI, M., BAYLOR, S. M. & SOMLYO, A. P. (1988) Excitation-contraction coupling in skeletal muscle fibers injected with the InsP3 blocker, heparin. FEBS Lett. 235, 57–62.

    Google Scholar 

  • RÍOS, E. & BRUM, G. (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325, 717–20.

    Google Scholar 

  • SÁNCHEZ, J. A. & STEFANI, E. (1983) Kinetic properties of calcium channels of twitch muscle fibres of the frog. J. Physiol. 337, 1–17.

    Google Scholar 

  • SCARPA, A., BRINLEY, F. J., TIFFERT, T. & DUBYAK, G. R. (1978) Metallochromic indicators of ionized calcium. Ann. NY Acad. Sci. 307, 86–112.

    Google Scholar 

  • TANABE, T., BEAM, K. G., POWELL, J. A. & NUMA, S. (1988) Restoration of excitation-contraction coupling in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336, 134–9.

    Google Scholar 

  • TANABE, T., ADAMS, B. A., NUMA, S. & BEAM, K. G. (1991) Repeat 1 of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature 352, 800–3.

    Google Scholar 

  • VERGARA, J., DIFRANCO, M., COMPAGNON, D. & SUÁREZISLA, B. (1991) Imaging of calcium transients in skeletal muscle fibers. Biophys. J. 59, 12–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, M., García, M.C., Farías, J.M. et al. Modulation of Ca2+ channels, charge movement and Ca2+ transients by heparin in frog skeletal muscle fibres. J Muscle Res Cell Motil 17, 575–594 (1996). https://doi.org/10.1007/BF00124356

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124356

Keywords

Navigation