Skip to main content
Log in

Immortalization of human keratinocytes with human papilloma virus DNA

  • Published:
Methods in Cell Science

Abstract

Human keratinocytes, derived from the cervix or foreskin, can be immortalized with the HPV-16 or HPV-18 E6 and E7 genes. Two methods of introducing the viral oncogenes into keratinocytes i.e. calcium phosphate transfection and retroviral transduction, are described below, both of which have been optimized for human keratinocytes. While the calcium phosphate transfection method can be used in a normal tissue culture facility, transduction with a retroviral vector containing oncogenes, requires a containment facility and appropriate laboratory practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Band V, De Caprio J A, Delmolino L, et al. (1991). Loss of p53 protein in human papillomavirus type-16 E6-immortalized human mammary epithelial cells. J. Virol 65: 6671–6676.

    PubMed  Google Scholar 

  2. Banks L, Spence P, Androphy E, et al. (1987). Identification of human papillomavirus type 18 E6 polypeptide in cells derived from human cervical carcinomas. J Gen Virol 68: 1351–1359.

    PubMed  Google Scholar 

  3. Bedell MA, Jones KH, Grossman SR, et al. (1989). Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells. J Virol 63: 1247–1255.

    PubMed  Google Scholar 

  4. Boyce ST, Ham RG (1983). Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol 81: 33s-40s.

    PubMed  Google Scholar 

  5. Cripe TC, Haugen TH, Turk JP, et al. (1987). Transcriptional regulation of the human papillomavirus-16 E6–E7 promoter by a keratinocyte-dependent enhancer, and by viral E2 transactivation and repressor gene products: implications for cervical carcinogenesis. EMBO J 6: 3745–3753.

    PubMed  Google Scholar 

  6. Durst M, Dzarlieva-Petrusevska RT, Boukamp P, et al. (1987). Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1: 251–256.

    PubMed  Google Scholar 

  7. Halbert CL, Demers GW, Galloway DA (1991). The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol 65: 473–478.

    PubMed  Google Scholar 

  8. Halbert CL, Demer GW, Galloway DA (1992). The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J Virol 66: 2125–2134.

    PubMed  Google Scholar 

  9. Hawley-Nelson P, Vousden KH, Hubbert NL, et al. (1989). HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 8: 3905–3910.

    PubMed  Google Scholar 

  10. Hurlin PJ, Kaur P, Smith PP, et al. (1991). Progression of human papillomavirus type 18-immortalized human keratinocytes to a malignant phenotype. Proc Natl Acad Sci 88: 570–574.

    PubMed  Google Scholar 

  11. Kanda T, Watanabe S, Yoshiike K (1988). Immortalization of primary rat cells by human papillomavirus type 16 subgenomic DNA fragments controlled by the SV40 promoter. Virology 165: 321–325.

    PubMed  Google Scholar 

  12. Kaur P, McDougall JK (1987). Transformation of mouse cells by human papillomavirus type-6b and type-18 DNAs. In Steinbery BM, Brandsma JL, Taichman LB (eds), Cancer Cell, Vol. 5. New York: Cold Spring Harbor, pp 249–252.

    Google Scholar 

  13. Kaur P, McDougall JK (1988). Characterization of primary human keratinocytes transformed by human papillomavirus type 18. J Virol 62: 1917–1924.

    PubMed  Google Scholar 

  14. Kaur P, McDougall JK (1989). HPV-18 immortalization of human keratinocytes. Virology 173: 302–310.

    PubMed  Google Scholar 

  15. Kaur P, McDougall JK, Cone R (1989). Immortalization of primary human epithelial cells by cloned cervical carcinoma DNA containing human papillomavirus type 16 E6/E7 open reading frames. J Gen Virol 70: 1261–1266.

    PubMed  Google Scholar 

  16. Kaur P, Pascoe R, Smith W, et al. (1994). Establishment of a human umbilical vein endothelial cell line with normal functional capabilities. Endothelium 2: 113–123.

    Google Scholar 

  17. Matlashewski G, Osborn K, Banks L, et al. (1988). Transformation of primary human fibroblast cells with papillomavirus type 16 DNA and EJ-ras. Intl J Cancer 42: 232–238.

    Google Scholar 

  18. Matlashewski G, Schneider J, Banks L, et al. (1987). Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO J 6: 1741–1746.

    PubMed  Google Scholar 

  19. Miller AD, Rosman GJ (1989). Improved retroviral vectors for gene transfer and expression. Biotechniques 7: 980–990.

    PubMed  Google Scholar 

  20. Munger K, Phelps WC, Bubb V, et al. (1989). The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63: 4417–4421.

    PubMed  Google Scholar 

  21. Pecoraro, G, Morgan D, Defendi V (1989). Differential effects of human papillomavirus type 6, 16 and 18 DNAs on immortalization and transformation of human cervical epithelial cells. Proc Natl Acad Sci 86: 563–577.

    PubMed  Google Scholar 

  22. Perez-Reyes N, Halbert C, Smith PP, et al. (1992). Immortalization of primary human smooth muscle cells. Proc Natl Acad Sci 89: 1224–1228.

    PubMed  Google Scholar 

  23. Pheips WC, Yee CL, Munger K, et al. (1988). The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of Adenovirus Ela. Cell 53: 539–547.

    PubMed  Google Scholar 

  24. Pirisi L, Creek KE, Doniger J, et al. (1988). Continuous cell lines with altered growth and differentiation properties originate after transfection of human keratinocytes with human papillomavirus type 16. Carcinogenesis 9: 1573–1579.

    PubMed  Google Scholar 

  25. Schwarz E, Freese UK, Gissmann L, et al. (1985). Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314: 111–114.

    PubMed  Google Scholar 

  26. Seedorf K, Oltersdorf T, Krammer G, et al. (1987). Identification of early proteins of the human papillomavirus type 16 (HPV16) and type 18 (HPV18) in cervical carcinoma cells. EMBO J 6: 139–144.

    PubMed  Google Scholar 

  27. Storey A, Pim D, Murray A, et al. (1988). Comparison of the in vitro transforming activities of human papillomavirus types. EMBO J 7: 1815–1820.

    PubMed  Google Scholar 

  28. Tanaka A, Noda T, Yajima H, et al. (1989). Identification of a transforming gene of human papilloma-virus type 16, J Virol 63: 1465–1469.

    PubMed  Google Scholar 

  29. Watanabe S, Kanda T, Yoshiike K (1989). Human papillomavirus type 16 transformation of primary human embryonic fibroblasts requires expression of open reading frames E6 and E7. J Virol 63: 965–969.

    PubMed  Google Scholar 

  30. Watanabe S, Yoshiike K (1988). Transformation of rat 3Y1 cells by human papillomavirus type-18 DNA. Intl J Cancer 41: 896–900.

    Google Scholar 

  31. Woodworth CD, Bowden PE, Doniger J, et al. (1988). Characterization of normal human exocervical epithelial cells immortalized in vitro by papillomavirus types 16 and 18 DNA. Cancer Res 48: 4620–4628.

    PubMed  Google Scholar 

  32. Woodworth CD, Doniger J, DiPaolo JA (1989). Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma. J Virol 63: 159–164.

    PubMed  Google Scholar 

  33. Yasumoto S, Burhardt AL, Doniger J, et al. (1986). Human papillomavirus type 16 DNA-induced malignant transformation of NIH3T3 cells. J Virol 57: 572–577.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, P., Halbert, C. Immortalization of human keratinocytes with human papilloma virus DNA. Methods Cell Sci 17, 117–123 (1995). https://doi.org/10.1007/BF00986660

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00986660

Key words

Navigation