Skip to main content
Log in

Transgenic sugarcane plants resistant to stem borer attack

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A truncated cryIA(b) gene encoding the active region of the Bacillus thuringiensis δ-endotoxin was expressed in transgenic sugarcane plants (Saccharum officinarum L.) under the control of the CaMV 35S promoter. Genetic transformation was accomplished by electroporation of intact cells. The levels of recombinant toxin were established and biological activity tests were performed against neonate sugarcane borer (Diatraea saccharalis F.) larvae. Transgenic sugarcane plants showed significant larvicidal activity despite the low expression of CryIA(b).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adang M, Brody MS, Cardineau G, Eagan N, Roush RT, Shewmaker CK, Jones A, Oakes JV, McBride KE: The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol Biol 21: 1131–1145 (1993).

    Google Scholar 

  2. Arencibia A, Molina P, De la Riva G, Selman-Housein G: Production of transgenic sugarcane (Sacharum officinarum L.) plants by intact cell electroporation. Plant Cell Rep 14: 305–309 (1995).

    Google Scholar 

  3. Bennett FD: Estudios sobre el barrenador de la caña de azúcar Diatraea sp. Generalidades y control. Mexico (1977).

  4. Bradford MM: A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 (1976).

    Google Scholar 

  5. Christou P: Genetic transformation of crop plants using microprojectile bombardment. Plant J 2: 275–281 (1992).

    Google Scholar 

  6. Collazo D: Revision de la literatura mundial sobre el borer de la caña de azúcar. Editorial Cientifico Técnica, Havana. (1990).

    Google Scholar 

  7. Cooley J, Ford T, Christou P: Molecular and genetic characterization of elite transgenic rice plants produced by electric discharge particle acceleration. Theor Appl Genet 90: 97–104 (1995).

    Google Scholar 

  8. Dekeyser R, Claes B, De Rycke R, Habets M, Van Montagu M, Caplan A: Plant Cell 2: 591–602 (1990).

    Google Scholar 

  9. Dellaporta SL, Wood J, Hicks JB: A plant DNA mini-preparation: Version II. Plant Mol Biol Rep 1: 19–21 (1983).

    Google Scholar 

  10. Feitelson JS, Payne J, Kim L: Bacillus thuringiensis: insects and beyond. Bio/technology 10: 271–276 (1992).

    Google Scholar 

  11. Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick MS, Niedermeyer JD, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT: Insect tolerant transgenic tomato plants. Bio/technology 5: 807–813 (1987).

    Google Scholar 

  12. Flegg CL, Clark MF: The detection of apple chlorotic leafspot virus by modified procedure of enzyme-linked immunosorbent assay. Ann Appl Biol 91: 61–65 (1979).

    Google Scholar 

  13. Höfte H, Whiteley H: Insecticidal crystal proteins of Bacillus thurningiensis. Microbiol Rev 53: 242–255 (1989).

    Google Scholar 

  14. Jefferson RA: Genetic Engineering: Principles and Methods, vol 10, Plenum Publishing Corporation, Setlow JK (1988).

    Google Scholar 

  15. Kidd G: The Bt. working group really does work. Bio/technology 12: 577–582 (1994).

    Google Scholar 

  16. King EG, Martin DF, Miles LR: Advances in rearing of Lixophaga diatraea (Dip.: Tachinidae). Enthomophaga 20: 307–311 (1975).

    Google Scholar 

  17. Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P: Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci USA 85: 8502–8505 (1988).

    Google Scholar 

  18. Knowles BH, Dow JAT: The crystal δ-endotoxins of Bacillus thuringiensis: models for their mechanism of action on the insect gut. Bioessays 15: 83–91 (1993).

    Google Scholar 

  19. Koziel MG, Beland GL, Bowman C, Carrozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill MS, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV: Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/technology 11: 194–200 (1993).

    Google Scholar 

  20. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    Google Scholar 

  21. Martin JR, Galvéz G, De Armas Urquiza R, Espinosa R, Hernandez V, León A: La caña de azúcar en Cuba. Editorial Cientifico Técnica, Habana (1987).

    Google Scholar 

  22. Payan FA, Carmen H, Tascón G: Tecnicas para la micropropagación de la caña de azúcar (Saccharum officinarum L.) mediante el cultivo de tejidos y yemas. Acta Agron 27 (1977).

  23. Perlak FJ, Deaton RW, Armstrong TA, Fuch RT, Sims SR, Greenplate JT, Fischhoff DA: insect resistant cotton plants. Bio/technology 8: 939–943 (1990).

    Google Scholar 

  24. Russel JA, Roy MK, Sanford JC: Major improvement in biolistic transformation of suspention-cultured tobacco cells. In Vitro Cell Devel Biol 28P: 97–105 (1992).

    Google Scholar 

  25. Saul MW, Potrykus Y: Direct gene transfer to protoplasts: Fate of the transferred genes. Devel Genet 11: 176–181 (1990).

    Google Scholar 

  26. Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beukeleer M, Dean DA, Zabeau M, Van Montagu M, Leemans J: Transgenic plants protected from insect attack. Nature 328: 33–37 (1987).

    Google Scholar 

  27. Vázquez RI, Prieto D, De la Riva, G., Selman-Housein G: Develoment of an immunoradiometric assay for quantitative determination of CryIA(b) protein in transgenic sugarcane plants. Journal of Immunological Methods 196: 33–39 (1996).

    Google Scholar 

  28. Vázquez RI, Prieto D, Martínez A, De la Riva G: P210k: the putative binding protein for Bacillus thuringiensis CryIA(c) δ-endotoxin in the midgut of the lepidopteran Diatraea saccharalis. Biotecnol Apl 13: 117 (1996).

    Google Scholar 

  29. Vázquez RI, Prieto D, Olóriz MI, De la Riva G, Selman-Housein G: Heterologous expression of recombinant δ-endotoxins from Bacillus thuringiensis in Escherichia coli: comparative study in three expression systems. Rev Lat-Am Microbiol 37: 237–244 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arencibia, A., Vázquez, R.I., Prieto, D. et al. Transgenic sugarcane plants resistant to stem borer attack. Molecular Breeding 3, 247–255 (1997). https://doi.org/10.1023/A:1009616318854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009616318854

Navigation