Skip to main content
Log in

A transgene-centered approach to the biosafety of transgenic phosphinothricin-tolerant plants

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The microbial bar and pat genes confer tolerance to the non-selective herbicide phosphinothricin (PPT; sold as Basta or Finale). This tolerance in plants could provide an environmental gain compared to current-day herbicide cocktails, but the safety of such a transgene approach is questioned by many. The biosafety of the presence of these herbicide tolerance genes in plants is evaluated in a ‘transgene-centered approach’. Potentially, the introduction of transgenic PPT-tolerant crops could result in acquired PPT tolerance in weedy relatives of these crops. Assuming responsible use of this trait in agronomy, the ecological consequences with respect to weediness or spread of the transgenic PPT tolerance are concluded to be negligible. The key issue for the toxicological evaluation is whether or not the plant has actually been sprayed with PPT. Consumption of the gene and/or gene product from unsprayed transgenic plant material will not have adverse effects. In case of PPT-sprayed material, PPT or its derivatives could be present in food and feed and crop-specific metabolites might be formed. To date, the toxicological impact of such a putative exposure is not sufficiently clear, and further premarket testing is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arias DM, Rieseberg LH: Gene flow between cultivated and wild sunflowers. Theor Appl Genet 89: 655–660 (1994).

    Google Scholar 

  2. Arriola PE: Risks of escape and spread of engineered genes from transgenic crops to wild relatives. AgBiotechnol News Info 9: 157–160 (1997).

    Google Scholar 

  3. Arriola PE, Ellstrand NC: Crop-to-weed gene flow in the genus Sorghum (Poaceae); spontaneous interspecific hybridization between johnsongrass, Sorghum halepense, and crop sorghum, S. bicolor. Am J Bot 83: 1153–1160 (1996).

    Google Scholar 

  4. Bayer E, Gugel KH, Hägele K, Hagenmaier H, Jessipow S, König WA, Zähner H: Phosphinothricin und Phosphinothricyl-Alanyl-Alanin. Helv Chim Acta 55: 224–239 (1972).

    Google Scholar 

  5. Berkowitz DB: The food safety of transgenic animals. Bio/technology 8: 819–825 (1990).

    Google Scholar 

  6. De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Rao Movva N, Thompson C, Van Montagu M, Leemans J: Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518 (1987).

    Google Scholar 

  7. Botterman J, Gosselé V, Thoen C, Lauwereys M: Characterization of phosphinothricin acetyltransferase and C-terminal enzymatically active fusion proteins. Gene 102: 33–37 (1991).

    Google Scholar 

  8. Botterman J, Leemans J: Engineering herbicide resistance in plants. Trends Genet 4: 219–221 (1988).

    Google Scholar 

  9. Crawley MJ: Arm-chair risk assessment, Bio/technology 11: 1496 (1993).

    Google Scholar 

  10. Crawley MJ: Reply on comment Miller et al. Bio/technology 12: 217 (1994).

    Google Scholar 

  11. Crawley MJ, Hails RS, Rees M, Kohn D, Buxton J: Ecology of transgenic oilseed rape in natural habitats. Nature 363: 620–623 (1993).

    Google Scholar 

  12. Devine MD, Duke SO, Fedtke C: Physiology of Herbicide Action. PTR Prentice Hall, Englewood Cliffs, NJ (1993).

    Google Scholar 

  13. Dröge W, Broer I, Pühler A: Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187: 142–151 (1992).

    Google Scholar 

  14. Dorn E, Görlitz G, Heusel R, Stumpf K: Verhalten von Glufosinat-ammonium in der Umwelt: Abbau im und Einfluss auf das Ökosystem. Z Pflanzenkrankh und Pflanzenschutz 13: 459–468 (1992).

    Google Scholar 

  15. Dröge-Laser W, Siemeling U, Pühler A, Broer I: The metabolites of the herbicide-phosphinothricin (glufosinate). Plant Physiol 105: 159–166 (1994).

    Google Scholar 

  16. Ebert E, Leist KH, Mayer D: Summary of safety evaluation toxicity studies of glufosinate ammonium. Food Chem Toxicol 28: 339–349 (1990).

    Google Scholar 

  17. Food and Drug Administration/Environmental Protection Agency/United States Department of Agriculture: Proceedings ‘Conference on scientific issues related to potential allergenicity in transgenic food crops’, Annapolis, MD, 18–19 April (1994).

  18. Fredshavn JR, Poulsen GS, Huybrechts I, Rüdelsheim P: Competitiveness of transgenic oilseed rape. Transgen Res 4: 142–148 (1995).

    Google Scholar 

  19. Greef W de, Delon R, de Block M, Leemans J, Botterman J: Evaluation of herbicide resistance in transgenic crops under field conditions. Bio/technology 7: 61–64 (1989).

    Google Scholar 

  20. Hoechst: DeFinale Produktinformatie. September 1984 (1984).

  21. Jones DD, Maryanski JH: Safety considerations in the evaluation of transgenic plants for human food. In: Levin MA and Strauss HS (eds) Risk Assessment in Genetic Engineering, pp. 64–82. McGraw-Hill, New York (1991).

    Google Scholar 

  22. Kareiva P: Transgenic plants on trial. Nature 363: 580–581 (1993).

    Google Scholar 

  23. Keeler KH: Can genetically engineered crops become weeds? Bio/technology 7: 1134–1139 (1989).

    Google Scholar 

  24. Kishore GM, Shah DM: Amino acid biosynthesis inhibitors as herbicides. Annu Rev Biochem 57: 627–663 (1988).

    Google Scholar 

  25. de Laat AAM, van Dun CMP: Inbouw van herbicideresistentiegenen in gewassen; overwegingen van een verdelingsbedrijf. Gewasbescherming 25: 179–183 (1994).

    Google Scholar 

  26. Lea PJ, Joy KW, Ramos JL, Guerrero MG: The action of the 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry 23: 1–6 (1984).

    Google Scholar 

  27. Lindhoud WM: HOE 39866 (Glufosinate-ammonium): state of development and prospects for the Netherlands. Med Fac Landbouwwet Rijksuniv Gent 49: 1085–1090 (1984).

    Google Scholar 

  28. Metz PLJ, Nap JP: A transgene-centered approach to the biosafety of transgenic crops: overview of selection and reporter genes. Acta Bot Neerl 46: 25–50 (1997).

    Google Scholar 

  29. Miller H, Beachy R, Huttner SL: Risk assessment redux. Bio/technology 12: 216–217 (1994).

    Google Scholar 

  30. Miller H, Huttner SL, Beachy R: Risk assessment experiments for ‘genetically modified’ plants. Bio/technology 11: 1323–1324 (1993).

    Google Scholar 

  31. Müllner H, Eckes P, Donn G: Engineering crop resistance to the naturally occurring glutamine synthetase inhibitor phosphinothricin. In: Duke SO, Menn JJ, Plimmer JR (eds) Pest Control with Enhanced Environmental Safety, pp. 38–47. ACS Symposium Series 524. American Chemical Society, Washington, DC (1993).

    Google Scholar 

  32. Murakami T, Anzai H, Imai S, Satoh A, Nagaoka K, Thompson CJ: The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol Gen Genet 205: 42–50 (1986).

    Google Scholar 

  33. Nap JP, Bijvoet J, Stiekema WJ: Biosafety of kanamycin-resistant transgenic plants. Transgen Res 1: 39–249 (1992).

    Google Scholar 

  34. Rijn JP van, Straalen NM van, Willems J: Handboek bestrijdingsmiddelen: gebruik en milieueffecten. VU Uitgeverij, Amsterdam, Netherlands (1995).

    Google Scholar 

  35. Schlüter K, Fütterer J, Potrykus I: ‘Horizontal’ gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs –if at all– at an extremely low frequency. Bio/technology 13: 1094–1098 (1995).

    Google Scholar 

  36. Strauch E, Wohlleben W, Pühler A: Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Gene 63: 65–74 (1988).

    Google Scholar 

  37. Tachibana K, Watanabe T, Sekizuwa Y, Takematsu T: Accumulation of ammonia in plants treated with bialaphos. J Pestic Sci 11: 33–37 (1986).

    Google Scholar 

  38. Tebbe CC, Reber HH: Utilization of the herbicide phosphinothricin as a nitrogen source by soil bacteria. Appl Microbiol Biotechnol 29: 103–105 (1988).

    Google Scholar 

  39. Thompson C, Movva N, Tizard R, Crameri R, Davies J, Lauwereys M, Botterman J: Characterization of the herbicide resistance gene ‘bar’ from Streptomyces hygroscopicus. EMBO J 6: 2519–2523 (1987).

    Google Scholar 

  40. Tiedje JM, Colwell RK, Grossman YL, Hodson RE, Lenski RE, Mack RN, Regal PJ: The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology 70: 298–315 (1989).

    Google Scholar 

  41. Trinks K: Studies on the phosphinothricin acetyltransferase gene and protein. Mitt Biol Bundesanst 309: 49 (1995).

    Google Scholar 

  42. Walter C, Broer I, Hillemann D, Pühler A: High frequency, heat treatment-induced inactivation of the phosphinothricin resistance gene in transgenic single cell suspension cultures of Medicago sativa. Mol Gen Genet 235: 189–196 (1992).

    Google Scholar 

  43. Williamson M: Environmental risks from the release of genetically modified organisms (GMOs): the need for molecular ecology. Mol Ecol 1: 3–8 (1992).

    Google Scholar 

  44. Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Pühler A: Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Gene 70: 25–37 (1988).

    Google Scholar 

  45. WSSA (Weed Science Society of America): Herbicide Handbook, 7th ed., pp. 147–149 (1994).

  46. Yoneyama K, Anzai H: Transgenic plants resistant to diseases by the detoxification of toxins. In: Biotechnology in Plant Disease Control, pp. 115–137. Wiley-Liss, New York (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metz, P.L.J., Stiekema, W.J. & Nap, JP. A transgene-centered approach to the biosafety of transgenic phosphinothricin-tolerant plants. Molecular Breeding 4, 335–341 (1998). https://doi.org/10.1023/A:1009695124173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009695124173

Navigation