Skip to main content
Log in

Synthesis and structural chemistry of novel heteropolymolybdates and -tungstates

  • Published:
Molecular Engineering

Abstract

The chemistry of polynuclear oxometalate anions is dominated by molybdenum and tungsten in their highest oxidation state. During the past twenty years this class of compounds has attracted much attention because of their variable applications, e.g. as reagents in analytical procedures, as industrial catalysts and as potential anticancer drugs.

In order to obtain model systems for the investigation of the catalytic activity of heteropolyanions we have synthesized and structurally characterized some organo derivatives of polyoxoanions. We secondly focus on Sb(III) and Bi(III) heteropolytungstates to examine the important influence of the unshared electron pair on the resulting structures and properties. Some of these compounds may be regarded as supramolecular aggregates showing inclusion phenomena.

In 9 two [SbW9O33]9− anions are linked by a set of six sodium ions forming a nearly planar hexagon. The sodium ions are enveloped by an oxygen cage formed by terminal oxygen atoms of the polyanions and by water molecules. Furthermore, the four anions [Sb2W22O74(OH)2]12−, [Sb2W20Fe2O70(H2O)6]8−, [Sb2W20Co2O70(H2O)6]10− and [Bi2W20Fe2O68(OH)2(H2O)6]6− (in10, 11, 12, 13) may be regarded as transition metal complexes of novel [Sb2W20O70]14− or [Bi2W20O70]14− anions which are serving as ligands. The octahedral coordination sphere of each transition metal is formed by three oxygen atoms of the anion and completed by three water molecules. The Sb(III) heteropolyanion, [Na2Sb8W36O132(H2O)4]22− in (14) includes two sodium and four antimony ions besides four water molecules. Each anion consists of four β-B-SbW9-Keggin fragments linked together by four SbO4-groups, incorporating two sodium and four water molecules effecting an additional connection of the subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Berzelius:Pogg. Ann. 6, 369, 380 (1826);

    Google Scholar 

  2. C. Marignac:C. R. Acad. Sci. 55, 888 (1862);

    Google Scholar 

  3. C. Marignac:Ann. Chim. 25, 362 (1862);

    Google Scholar 

  4. L. Svanberg and H. J. Struve:J. Prakt. Chem. 44, 257, 291 (1848).

    Google Scholar 

  5. M. T. Pope:Heteropoly and Isopoly Oxometalates, Springer Verlag, Berlin, Heidelberg, New York, Tokyo 1983; M. T. Pope, in G. Wilkinson (ed.), Comprehensive Coordination Chemistry, Pergamon Press, Oxford, Vol. 3., p. 1023 (1987).

    Google Scholar 

  6. I. Paulat-Böschen:J. Chem. Soc., Chem. Comm., 780 (1979);

  7. B. Krebs and I. Paulat-Böschen:Acta Cryst. B38, 1710 (1982);

    Google Scholar 

  8. K. H. Tytko, B. Schönfeld, B. Buss, and O. Glemser:Angew. Chem. Int. Ed. 12, 330 (1973);Angew. Chem. 85, 305 (1973);

    Google Scholar 

  9. B. Krebs, S. Stiller, K. H. Tytko, and J. Mehmke:Eur. J. Solid State Inorg. Chem. 28, 883 (1991).

    Google Scholar 

  10. D. J. Hucknall:Selective Oxidation of Hydrocarbons, Academic Press, New York (1974).

    Google Scholar 

  11. Y. Jeannin and J. Martin-Frère:J. Am. Chem. Soc. 103, 1664 (1981);

    Google Scholar 

  12. T. J. R. Weakley:Inorg. Chim. Acta 87, 13 (1984);

    Google Scholar 

  13. Y. Jeannin and J. Martin-Frère:Inorg. Chem. 18, 3010 (1979);

    Google Scholar 

  14. F. Robert, M. Leyrie, G. Hervé, A. Tézé, and Y. Jeannin:Inorg. Chem. 19, 1746 (1980);

    Google Scholar 

  15. M. Leyrie, A. Tézé, and G. Hervé:Inorg. Chem. 24, 1275 (1985).

    Google Scholar 

  16. J. Fischer, L. Ricard, and R. Weiss:J. Am. Chem. Soc. 98, 3050 (1976);

    Google Scholar 

  17. T. Yamase, H. Naruke, and Y. Sasaki:J. Chem. Soc. Dalton Trans., 1687 (1990);

  18. Y. Ozawa and Y. Sasaki:Chem. Lett., 923 (1987).

  19. B. Krebs, B. Lettmann, H. Pohlmann, and R. Fröhlich:Z. Kristallogr. 196, 231 (1991).

    Google Scholar 

  20. R. R. Holmes, K. C. K. Swamy, C. G. Schmid, and R. O. Day:J. Am. Chem. Soc. 110, 7060 (1988).

    Google Scholar 

  21. B. Liu, Y. Ku, M. Wang, B. Wang, and P. Zheng:J. Chem. Soc., Chem. Comm., 651 (1989).

  22. Y. Sasaki, H. Imoto, and O. Nagano:Bull. Chem. Soc. Jpn. 57, 1417 (1984).

    Google Scholar 

  23. B. Krebs, B. Lettmann, and H. Pohlmann:Z. Naturforsch. (in press);

  24. Z. Kristallogr. 186, 233 (1989).

    Google Scholar 

  25. K. Y. Matsumoto:Bull. Chem. Soc. Jpn. 52, 3284 (1979);

    Google Scholar 

  26. K. M. Barkigia, L. M. Rajkovic-Blazer, M. T. Pope, E. Prince, and C. O. Quicksall:Inorg. Chem. 19, 2531 (1980).

    Google Scholar 

  27. V. W. Day, M. F. Fredrich, W. G. Klemperer, and R.-S. Liu:J. Am. Chem. Soc. 101, 491 (1979).

    Google Scholar 

  28. S. H. Wasfi, M. T. Pope, K. Barkigia, R. Butcher, and C. O. Quicksall:J. Am. Chem. Soc. 100, 7786 (1978).

    Google Scholar 

  29. M. T. Pope:Inorg. Chem. 11, 1973 (1972).

    Google Scholar 

  30. R. Strandberg:Acta Chem. Scand. 27, 1004 (1973).

    Google Scholar 

  31. K. Y. Matsumoto, M. Kato, and Y. Sasaki:Bull. Chem. Soc. Jpn. 49, 106 (1976).

    Google Scholar 

  32. B. Y. Liu, G. Y. Xie, and Y.-T. Ku:Polyhedron 9, 2023 (1990).

    Google Scholar 

  33. T. M. Che, V. W. Day, L. C. Francesconi, M. F. Fredrich, W. G. Klemperer, and W. Shum:Inorg. Chem. 24, 4055 (1985).

    Google Scholar 

  34. L. P. Kazanskii, A. M. Golubev, I. I. Baburina, E. A. Torchenkova, and V. I. Spitsyn:Bull. Acad. Sci. USSR. Div. Chem. Sci., 1956 (1972);

  35. R. D. Peacock and T. J. R. Weakley:J. Chem. Soc., (A) 1836 (1971).

  36. A. S. Saprykin, V. I. Spitsyn, and N. N. Krot:Dokl. Chem. 226, 114 (1976);

    Google Scholar 

  37. Dokl. Phys. Chem. 228, 500 (1976).

    Google Scholar 

  38. G. Marcu, I. Todorut, and A. Botar:Rev. Roum. Chim. 16, 1335 (1971).

    Google Scholar 

  39. L. A. Hallopeau:C. R. Acad. Sci. C122, 1419 (1896);

    Google Scholar 

  40. Bull. Soc. Chim. France 15, 918 (1896);

    Google Scholar 

  41. Ann. Chim. Phys. 19, 126 (1900).

    Google Scholar 

  42. J. Iball, J. N. Low, and T. J. R. Weakley:J. Chem. Soc., Dalton Trans., 2021 (1974);

  43. A. M. Golubev, L. A. Murandyan, L. P. Kazanskii, E. A. Torchenkova, V. I. Simonov, and V. I. Spitsyn:Sov. J. Coord. Chem. 3, 715 (1977).

    Google Scholar 

  44. B. Krebs and H. Pohlmann (to be published).

  45. F. Robert and A. Tézé:Acta Cryst. B37, 318 (1981).

    Google Scholar 

  46. F. Robert, M. Leyrie, and G. Hervé:Acta Cryst. B38, 358 (1982).

    Google Scholar 

  47. M. Michelon, G. Hervé, and M. Leyrie:J. Inorg. Nucl. Chem. 42, 1583 (1980).

    Google Scholar 

  48. H. T. Evans, C. M. Tourné, G. F. Tourné, and T. J. R. Weakley:J. Chem. Soc., Dalton Trans., 2699 (1986);

  49. T. J. R. Weakley and R. G. Finke:Inorg. Chem. 29, 1235 (1990).

    Google Scholar 

  50. P. S. Roy and K. Wieghardt:Inorg. Chem. 26, 1885 (1987).

    Google Scholar 

  51. P. Schreiber, K. Wieghardt, B. Nuber, and J. Weiss:Z. anorg. allg. Chem. 587, 174 (1990);

    Google Scholar 

  52. P. Schreiber, K. Wieghardt, B. Nuber, and J. Weiss:Polyhedron 8, 1675 (1989).

    Google Scholar 

  53. W. N. Lipscomb:Inorg. Chem. 4, 132 (1965).

    Google Scholar 

  54. P. Souchay, M. Leray, and G. Hervé:C. R. Acad. Sci. C271, 1337 (1970).

    Google Scholar 

  55. G. M. Brown, M. R. Noe-Spirlet, W. R. Busing, and H. A. Levy:Acta Cryst. B33, 1038 (1977).

    Google Scholar 

  56. M. Michelon and G. Hervé:C. R. Acad. Sci. C274, 209 (1972)

    Google Scholar 

  57. M. H. Alizadeh, S. P. Harmalker, Y. Jeannin, J. Martin-Frère, and M. T. Pope:J. Am. Chem. Soc. 107, 2662 (1985).

    Google Scholar 

  58. F. Robert, M. Leyrie, G. Hervé, A. Tézé, and Y. Jeannin:Inorg. Chem. 19, 1746 (1980).

    Google Scholar 

  59. R. Contant and A. Tézé:Inorg. Chem. 24, 4610 (1985).

    Google Scholar 

  60. J. F. Keggin:Proc. Roy. Soc. London 144, 75 (1934).

    Google Scholar 

  61. Y. Jeannin and J. Martin-Frère:Inorg. Chem. 18, 3010 (1979).

    Google Scholar 

  62. Y. Ozawa and Y. Sasaki:Chem. Lett., 923 (1987).

  63. N. Giordano, G. Caporali, and N. Ferlazzo: U.S. Patent 3,226,421 (1965);

    Google Scholar 

  64. A.-M. Chaze and P. Courtine:J. Chem. Res., (S)96, (M)954 (1980).

  65. J. C. Edwards, R. D. Adams, and P. D. Ellis:J. Am. Chem. Soc. 112, 8349 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krebs, B., Klein, R. Synthesis and structural chemistry of novel heteropolymolybdates and -tungstates. Mol Eng 3, 43–59 (1993). https://doi.org/10.1007/BF00999623

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999623

Key words

Navigation