Skip to main content
Log in

Aero-sol-gel Reactor for Nano-powder Synthesis

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper discusses a new approach to the synthesis of nano-structured oxides where sol-gel reactions are carried out in aerosol droplets. This aero-sol-gel (ASG) reactor allows for manipulation of the structure, chemical composition and surface area of silica powders through variation of process parameters. ASG powders differ in nanostructure from other continuous process powders such as pyrolytic and solution-route powders. ASG powders contain mesopores (>2-nm) and micropores (<2-nm), the mesopores being responsible for high surface areas measured by nitrogen adsorption using BET theory. Primary particles of close to molecular scale are believed to lead to exceedingly large specific surface areas on the order of 600-m2/g. These primary particles aggregate into nanometer scale mass-fractal aggregates that cluster in micron scale agglomerates. Under controlled reaction conditions the powder structure is reproducible as measured by small-angle X-ray scattering, SAXS, analysis. The ASG reactor displays transport effects similar to those previously seen in laminar flame reactors as evidenced by the effect of reactor geometry and reactant concentration on product structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bale H.D. & P.W. Schmidt, 1984. Phys. Rev. Lett. 53, 596.

    Google Scholar 

  • Barett E.P., L.G. Joyner & P.P. Halenda, 1951. J. Am. Chem. Soc. 73, 3737.

    Google Scholar 

  • Beaucage G. & D.W. Schaefer, 1994. J. Non-Cryst. Solids, 172–174, 797.

    Google Scholar 

  • Beaucage G. 1995. J. Appl. Cryst., 28, 717.

    Google Scholar 

  • Beaucage G. 1996. J. Appl. Cryst., 29, 134.

    Google Scholar 

  • Beaucage G., S. Rane, S. Sukumaran, M. Satkowski, L.A. Schectman & Y. Doi, 1997. Macromolecules, 30, 4158.

    Google Scholar 

  • Brinker C.J. & G.W. Scherer, 1990. Sol-Gel Science, Academic Press, NY.

    Google Scholar 

  • Cortesi P., G. Donati & G. Saggese, 1984. European Patent Application EP0117755 A2.

  • Daniels F. & R.A. Alberty, 1975. Physical Chemistry, 4th ed., John Wiley & Sons, NY, p. 99.

    Google Scholar 

  • Gablenz S., D. Voltzke, H.-P. Abicht & J. Newmann-Zdralek, 1998. J. Mat. Sci. Let. 17, 537.

    Google Scholar 

  • Greg S.J. & K.S.W. Sing, 1982. Adsorption, Surface Area, and Porosity, 2nd ed., Academic Press, NY, p. 25.

    Google Scholar 

  • Hurd A.J., D.W. Schaefer, D.M. Smith, S.B. Ross, A. Le Mehaute & S. Spooner, 1989. Phys. Rev. B, 39, 9742.

    Google Scholar 

  • Hyeon-Lee J., G. Beaucage & S.E. Pratsinis, 1997. Chem. Mater. 9, 2400.

    Google Scholar 

  • Hyeon-Lee J., G. Beaucage, S.E. Pratsinis, 1998. MRS Symposium Series 520 Nano-structured powders and their industrial applications. In: Beaucage G., Mark J.E., Burns G.T. and Hua D.W. eds. Materials Research Society, Warrendale, PA, 115.

    Google Scholar 

  • Hyeon-Lee J., G. Beaucage, S.E. Pratsinis & S. Vemury, 1998. Langmuir 14, 5751.

    Google Scholar 

  • Ingebrethsen B.J., E. Matijevic & R.E. Partch, 1983. J. Colloid and Interf. Sci. 95, 228.

    Google Scholar 

  • Kostic E.M., S.J. Kiss, S.B. Boskovic & S.P. Zec, 1997. Am. Ceram. Soc. Bull. 76, 60.

    Google Scholar 

  • Matijevic E. 1982. Heterogeneous Atmospheric Chemistry. In: Schryer I. and David R. eds. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Matijevic E. & M. Visca, 1979. Ger. Offen. (German Patent) 2, 924,072, 20 December.

  • Matijevic E., Q.P. Zhong & R.E. Partch, 1995. Aerosol Sci. and Tech. 22, 162.

    Google Scholar 

  • Meakin P., 1986. On Growth and Form. In: Stanley H.E. and Ostrowsky N. eds. Martinus-Nijhoff, Boston, p. 111.

    Google Scholar 

  • Ocana M., V. Fornes & C.J. Serna, 1992. Ceramics Inter. 18, 99.

    Google Scholar 

  • Perry R.H. & C.H. Chilton, 1973. Chemical Engineers Handbook, 5'th ed., McGraw-Hill Book Co. NY.

    Google Scholar 

  • Pratsinis S.E., W. Zhu & S. Vemury, 1996. Powder Technol. 86, 87.

    Google Scholar 

  • Rubio J., J.L. Oteo, M. Villegas & P. Duran, 1997. J. Mater. Sci. 32, 643.

    Google Scholar 

  • Schaefer D.W. 1988. MRS Bulletin 8, 22.

    Google Scholar 

  • Schaefer D.W., J.E. Martin & K.D. Keefer, 1985. Physics of Finely Divided Matter. In: Bocarra N. and Daoud M. eds. Springer-Verlag, Berlin.

    Google Scholar 

  • Vemury S. & S.E. Pratsinis, 1995. Appl. Phys. Lett., 66, 3275.

    Google Scholar 

  • Visca M. & E. Matijevic, 1979. J. Coll. Inter. Sci., 68, 308.

    Google Scholar 

  • Witten T.A. & L.M. Sanders, 1981. Phys. Rev. Lett. 47, 1400.

    Google Scholar 

  • Wong P. & A.J. Bray, 1988. J. Appl. Cryst. 21, 786.

    Google Scholar 

  • Zhu W. & S.E. Pratsinis, 1996. Nanotechnology. In: Chow G.M. and Gonsalves K.E. eds. ACS Symposium Series 622, American Chemical Society, Washington, DC, pp. 64–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaucage, G., Hyeon-Lee, J., Kohls, D. et al. Aero-sol-gel Reactor for Nano-powder Synthesis. Journal of Nanoparticle Research 1, 379–392 (1999). https://doi.org/10.1023/A:1010066622968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010066622968

Navigation