Skip to main content
Log in

Integrability, computation and applications

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The study of integrable systems and the notion of integrability has been re-energized with the discovery that infinite-dimensional systems such as the Korteweg-de Vries equation are integrable. In this paper, the following novel aspects of integrability are described: (i) solutions of Darboux, Brioschi, Halphen-type systems and their relationships to monodromy problems and automorphic functions, (ii) computational chaos in integrable systems, (iii) we explain why we believe that homoclinic structures and homoclinic chaos associated with nonlinear integrable wave problems, will be observed in appropriate laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M. J. and Segur, H.:Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    Google Scholar 

  2. Novikov, S. P., Manakov, S. V., Pitaevskii, L. P., and Zakharov, V. E.:Theory of Solitons. The Inverse Scattering Method, Plenum, New York, 1984.

    Google Scholar 

  3. Ablowitz, M. J. and Clarkson, P. A.:Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  4. Ablowitz, M. J., Chakravarty, S., and Takhtajan, L. A.:Comm. Math. Phys. 158 (1993), 289–314.

    Google Scholar 

  5. Chakravarty, S., Ablowitz, M. J., and Clarkson, P. A.:Phys. Rev. Lett. 65 (1990), 1085–1087.

    Google Scholar 

  6. Mason, L. J. and Woodhouse, N. M. J.:Nonlinearity 6 (1993), 569–581.

    Google Scholar 

  7. Ablowitz, M. J., Chakravarty, S., and Takhtajan, L. A.: Integrable systems, self-dual YangMills equations and connections with modular forms, in S. Xiao (ed.),Proc. of Nonlinear Problems in Engineering and Science, Science Press, Beijing, China, 1992.

    Google Scholar 

  8. Takhtajan, L. A.: Modular forms asτ-functions for certain integrable reductions of the Yang-Mills equations, in O. Babelonet al. (eds.),Proc. Verdier Memorial Conference on Integrable Systems, Birkhauser, Berlin, 1993.

    Google Scholar 

  9. Chakravarty, S. and Ablowitz, M. J.: to be published, 1995.

  10. Ercolani, N., Forest, M. G., and McLaughlin, D. W.:Physica D43 (1990), 349–384.

    Google Scholar 

  11. Ablowitz, M. J. and Herbst, B. M.:SIAM J. Appl. Math. 50 (1990), 339–251.

    Google Scholar 

  12. Ablowitz, M. J., Schober, C. M., and Herbst, B. M.:Phys. Rev. Lett. 71 (1993), 2683–2686.

    Google Scholar 

  13. Ablowitz, M. J., Herbst, B. M., and Schober, C. M.: On the numerical solution of the sine-Gordon equation, I. Integrable discretizations and homoclinic manifolds, PAM Report 214, University of Colorado, Boulder, 1994.

    Google Scholar 

  14. Ablowitz, M. J. and Schober, C. M.:Contemp. Math. 172 (1994), 253–268.

    Google Scholar 

  15. Ward, R.S.:Phys. Lett. A 61 (1977), 81–82. See also, R. S. Ward and R. O. Wells:Twistor Geometry and Field Theory, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  16. Chakravarty, S. and Ablowitz, M. J.: On reductions of self-dual Yang-Mills equations, in P. Winternitz and D. Levi (eds.),Proc. NATO Advanced Research Workshop, Plenum Press, New York, 1990.

    Google Scholar 

  17. Mason, D. and Sparling, G. A. J.:J. Geom. Phys. 8 (1991), 263–271.

    Google Scholar 

  18. Dubrovin, B.: Private communication.

  19. Gibbons, G. W. and Pope, C. N.:Commun. Math. Phys. 66 (1979), 267–290.

    Google Scholar 

  20. Chazy, J.:C.R. Acad. Sci. Paris 149 (1909), 563–565.

    Google Scholar 

  21. Chakravarty, S.: To be published.

  22. Takhtajan, L. A.:Commun. Math. Phys. 160 (1994), 295–315.

    Google Scholar 

  23. Plemelj, J.:Problems in the Sense of Riemann and Klein, Interscience Publishers, New York, 1964.

    Google Scholar 

  24. Birkhoff, G. D.:Collected Mathematical Papers, Vol. 1, Dover, New York, 1968.

    Google Scholar 

  25. Jimbo, M., Miwa, T., and Ueno, K.:Physica D2 (1981), 306–352 and the references therein.

    Google Scholar 

  26. Jimbo, M. and Miwa, T.:Physica D2 (1981), 407–448.

    Google Scholar 

  27. Nehari, Z.:Conformal Mapping, McGraw-Hill, New York, 1952; (Reprinted by Dover, New York, 1975).

    Google Scholar 

  28. Ablowitz, M. J. and Ladik, J. F.:Stud. Appl. Math. 55 (1976), 213–229.

    Google Scholar 

  29. Benjamin, T. B.:Proc. Roy. Soc. A 299 (1967), 59–75.

    Google Scholar 

  30. Stokes, G. G.:Comb. Trans. 8 (1847), 441–473.

    Google Scholar 

  31. Whitham, G. B.:Linear and Nonlinear Waves, Wiley, New York, 1974.

    Google Scholar 

  32. Zabusky, N. J. and Kruskal, M. D.:Phys. Rev. Lett. 15 (1965), 240–243.

    Google Scholar 

  33. Schober, C. M. and McLaughlin, D. W.:Physica D57 (1992), 447–465.

    Google Scholar 

  34. Lake, B. M., Yuen, H. C., Rungaldier, H., and Ferguson, W. E.:J. Fluid. Mech 83 (1977), 49–74.

    Google Scholar 

  35. Hasselmann, K.: Discussion,Proc. Royal Soc. London (A),299 (1967), 67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ablowitz, M.J., Chakravarty, S. & Herbst, B.M. Integrability, computation and applications. Acta Appl Math 39, 5–37 (1995). https://doi.org/10.1007/BF00994624

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00994624

Mathematics subject classification (1991)

Key words

Navigation